Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health

Solving a 40-year-old mystery, UNC researchers find new route for better brain disorder treatments

by University of North Carolina School of Medicine
January 14, 2014
in Mental Health

[Subscribe to PsyPost on YouTube to stay up-to-date on the latest developments in psychology and neuroscience]

Share on FacebookShare on Twitter

Brain MRI scanScientists at the UNC School of Medicine and The Scripps Research Institute have discovered how salt acts as a key regulator for drugs used to treat a variety of brain diseases including chronic pain, Parkinson’s disease, and depression.

The finding, published online January 12 in the journal Nature, has cleared the way for more precisely targeted therapies for a host of diseases with the potential of fewer side effects.

“There’s a reason why certain drugs, for instance, work well for some people but not others and why those drugs can cause serious side effects, such as seizures, addiction, and death due to overdose,” said Patrick Giguere, PhD, co-first author of the Nature paper and UNC pharmacology postdoctoral fellow. “The reason is that we haven’t known the precise biological markers for those drugs.”

Markers represent the biological abnormalities that drugs aim to treat. Currently, many approved drugs –including morphine, oxycodone, and heroin – target opioid receptors, which use a variety of pathways to transmit chemical signals in the brain. “These drugs activate all of the receptor pathways,” Giguere said. “None of them modulates just one pathway.”

This ability of opioid medications to indiscriminately target receptor pathways is likely responsible for the beneficial and harmful effects associated with these addictive and commonly abused medications.

But now, Giguere and colleagues found a way to modulate just one pathway. They discovered that tweaking specific amino acids – the building blocks of receptors – can drastically change how opioid receptors control chemical signals.

The finding offers a way to create more precisely targeted therapies with the potential for enhanced beneficial actions and fewer side effects.  And since the opioid system is key for many brain processes, drugs that target these receptors could be useful for many diseases, including depression, chronic pain and Parkinson’s Disease.

At the heart of the finding is a simple element – sodium—the main component of table salt. Forty years ago scientists figured out that altering sodium concentrations in the brain changed the activity of opioid receptors. But since then, no one had figured out precisely how sodium did that. That’s because no one could create a clear picture of what the receptor looked like; researchers couldn’t see what sodium was doing. What they needed was a high-resolution crystal structure of the delta-opioid receptor. None existed until two years ago.

A crystal structure of a tiny piece of brain anatomy is similar to a snow crystal. Both have adopted a solid form that is the most stable form. Water, under specific circumstances, is most stable as a snow crystal. A protein, under certain circumstances, is most stable in a crystal form. Yet, snow and protein crystals are formed very differently. A snow flake forms when water freezes onto a dust particle. To create a crystal structure of a protein – such as a receptor – scientists have to use x-rays and liquid nitrogen to keep the protein stable. For years, this proved difficult in the case of the delta opioid receptor protein because it’s an extremely fragile part of a brain cell’s membrane.

But scientists at Scripps developed a novel technique that allowed them to create the first ever high-resolution 3-D crystal structure of the delta-opioid receptor. This sharp image revealed a sodium ion at the heart of the receptor.

“Sodium is not everywhere in the receptor,” Giguere said. “It fits in a pocket within the receptor’s structure.”

With that information, Giguere and others in the lab of UNC’s Michael Hooker Distinguished Professor Bryan Roth, created unique experimental procedures to show how specific amino acids hold the sodium ion in place. They also showed how the amino acids and sodium interact in order to modulate brain signals.

“The amino acids control the sodium ion,” Giguere said. “This control is like a trigger; it has a specific function on the opioid receptor.”

When Giguere and UNC colleagues mutated the amino acids, they saw extreme changes in how the delta-opioid receptor responds to chemical signals. In one experiment, Roth’s team tweaked an amino acid to cause a major change in the signaling response of the receptor’s beta-arrestin pathway, which is responsible for shutting down chemical signaling.

These findings suggest that it’s possible to create a drug that targets specific pathways inside the delta-opioid receptor.

Current medications either turn on the opioid receptor or turn it off. Giguere’s work shows how it’s possible to fine-tune the receptor so it functions optimally.

“This is a new field of research, which we call functional selectivity,” Giguere said. “There are very few crystal structures that show how this sort of pathway selectivity can work. This is why we think our findings will lead to another, potentially better class of drugs.”

The research was funded by the National Institute of Drug Abuse, the National Cancer Institute, the National Institute for General Medical Sciences, and the National Institute of Mental Health Psychoactive Drug Screening Program.

The co-first authors of the Nature paper are Patrick Giguere, PhD, a postdoctoral fellow at the UNC School of Medicine, and Gustavo Fenalti, PhD, a postdoctoral fellow in the at The Scripps Research Institute. Co-senior authors are Bryan Roth MD, PhD, Professor in the Department of Pharmacology in the School of Medicine and Director of the National Institute of Mental Health Psychoactive Drug Screening Program, and Raymond Stevens, PhD, a Professor in the Department of Integrative Structural and Computational Biology at The Scripps Research Institute.

ShareTweetSendScanShareSharePinSend

STAY CONNECTED

TRENDING

Attachment anxiety strengthens the link between boredom proneness and compulsive sexual behavior

Toxoplasma gondii parasite infection linked to cognitive deterioration in schizophrenia

People are less satisfied with their marriage when their partner is not interested in social interactions, study finds

New research shows link between tropical vacations and improved mental health

Sleep effort mediates the relationship between anxiety and depression, study finds

Harsh mothers more likely to have poor executive functioning and interpret others’ behavior as hostile

RECENT

Attachment anxiety strengthens the link between boredom proneness and compulsive sexual behavior

Those with Dark Triad traits are more likely to engage in manipulative behaviors when ending romantic relationships

A new psychology study has uncovered cultural differences in perceptions of heroes

Linguistic analysis of 177,296 Reddit comments sheds light on negative attitudes toward science

Are you a frequent apologizer? New research indicates you might actually reap downstream benefits

Pro-female and anti-male biases are more influential than race and other factors in Implicit Association Tests

Toxoplasma gondii parasite infection linked to cognitive deterioration in schizophrenia

New research shows link between tropical vacations and improved mental health

Currently Playing

Are you a frequent apologizer? New research indicates you might actually reap downstream benefits

Are you a frequent apologizer? New research indicates you might actually reap downstream benefits

Are you a frequent apologizer? New research indicates you might actually reap downstream benefits

Social Psychology
People with dark personality traits are better at finding novel ways to cause damage or harm others

People with dark personality traits are better at finding novel ways to cause damage or harm others

Dark Triad
Exercising in nature produces psychological benefits and measurable changes in brain activity

Exercising in nature produces psychological benefits and measurable changes in brain activity

Cognitive Science
People with social anxiety tend to engage in restrictive “safety behaviors” that make them less likable, study finds

People with social anxiety tend to engage in restrictive “safety behaviors” that make them less likable, study finds

Anxiety
Study helps untangle the complicated relationship between psychopathy and emotional awareness

Study helps untangle the complicated relationship between psychopathy and emotional awareness

Psychopathy
People exposed to phubbing by their romantic partner are less satisfied with their romantic relationship

People exposed to phubbing by their romantic partner are less satisfied with their romantic relationship

Relationships and Sexual Health
  • Cognitive Science
  • COVID-19
  • Mental Health
  • Social Psychology
  • Drug Research
  • Conspiracy Theories
  • Meditation
  • Psychology of Religion
  • Aviation Psychology and Human Factors
  • Relationships and Sexual Health
  • Evolutionary Psychology
  • Neuroimaging
  • Psychedelic Drugs
  • Dark Triad
  • Political Psychology

About

PsyPost is a psychology and neuroscience news website dedicated to reporting the latest research on human behavior, cognition, and society. (READ MORE...)

  • Contact us
  • Privacy policy

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

This website uses cookies. By continuing to use this website you are giving consent to cookies being used.