Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Neuroimaging

Disrupted sleep might stop the brain from flushing out toxic waste

by Julia Chapman, Camilla Hoyos, and Craig Phillips
December 15, 2025
in Neuroimaging, Sleep
Share on TwitterShare on Facebook

The brain has its own waste disposal system – known as the glymphatic system – that’s thought to be more active when we sleep.

But disrupted sleep might hinder this waste disposal system and slow the clearance of waste products or toxins from the brain. And researchers are proposing a build-up of these toxins due to lost sleep could increase someone’s risk of dementia.

There is still some debate about how this glymphatic system works in humans, with most research so far in mice.

But it raises the possibility that better sleep might boost clearance of these toxins from the human brain and so reduce the risk of dementia.

Here’s what we know so far about this emerging area of research.

Why waste matters

All cells in the body create waste. Outside the brain, the lymphatic system carries this waste from the spaces between cells to the blood via a network of lymphatic vessels.

But the brain has no lymphatic vessels. And until about 12 years ago, how the brain clears its waste was a mystery. That’s when scientists discovered the “glymphatic system” and described how it “flushes out” brain toxins.

Let’s start with cerebrospinal fluid, the fluid that surrounds the brain and spinal cord. This fluid flows in the areas surrounding the brain’s blood vessels. It then enters the spaces between the brain cells, collecting waste, then carries it out of the brain via large draining veins.

Scientists then showed in mice that this glymphatic system was most active – with increased flushing of waste products – during sleep.

One such waste product is amyloid beta (Aβ) protein. Aβ that accumulates in the brain can form clumps called plaques. These, along with tangles of tau protein found in neurons (brain cells), are a hallmark of Alzheimer’s disease, the most common type of dementia.

In humans and mice, studies have shown that levels of Aβ detected in the cerebrospinal fluid increase when awake and then rapidly fall during sleep.

But more recently, another study (in mice) showed pretty much the opposite – suggesting the glymphatic system is more active in the daytime. Researchers are debating what might explain the findings.

So we still have some way to go before we can say exactly how the glymphatic system works – in mice or humans – to clear the brain of toxins that might otherwise increase the risk of dementia.

Does this happen in humans too?

We know sleeping well is good for us, particularly our brain health. We are all aware of the short-term effects of sleep deprivation on our brain’s ability to function, and we know sleep helps improve memory.

In one experiment, a single night of complete sleep deprivation in healthy adults increased the amount of Aβ in the hippocampus, an area of the brain implicated in Alzheimer’s disease. This suggests sleep can influence the clearance of Aβ from the human brain, supporting the idea that the human glymphatic system is more active while we sleep.

This also raises the question of whether good sleep might lead to better clearance of toxins such as Aβ from the brain, and so be a potential target to prevent dementia.

How about sleep apnoea or insomnia?

What is less clear is what long-term disrupted sleep, for instance if someone has a sleep disorder, means for the body’s ability to clear Aβ from the brain.

Sleep apnoea is a common sleep disorder when someone’s breathing stops multiple times as they sleep. This can lead to chronic (long-term) sleep deprivation, and reduced oxygen in the blood. Both may be implicated in the accumulation of toxins in the brain.

Sleep apnoea has also been linked with an increased risk of dementia. And we now know that after people are treated for sleep apnoea more Aβ is cleared from the brain.

Insomnia is when someone has difficulty falling asleep and/or staying asleep. When this happens in the long term, there’s also an increased risk of dementia. However, we don’t know the effect of treating insomnia on toxins associated with dementia.

So again, it’s still too early to say for sure that treating a sleep disorder reduces your risk of dementia because of reduced levels of toxins in the brain.

So where does this leave us?

Collectively, these studies suggest enough good quality sleep is important for a healthy brain, and in particular for clearing toxins associated with dementia from the brain.

But we still don’t know if treating a sleep disorder or improving sleep more broadly affects the brain’s ability to remove toxins, and whether this reduces the risk of dementia. It’s an area researchers, including us, are actively working on.

For instance, we’re investigating the concentration of Aβ and tau measured in blood across the 24-hour sleep-wake cycle in people with sleep apnoea, on and off treatment, to better understand how sleep apnoea affects brain cleaning.

Researchers are also looking into the potential for treating insomnia with a class of drugs known as orexin receptor antagonists to see if this affects the clearance of Aβ from the brain.

If you’re concerned

This is an emerging field and we don’t yet have all the answers about the link between disrupted sleep and dementia, or whether better sleep can boost the glymphatic system and so prevent cognitive decline.

So if you are concerned about your sleep or cognition, please see your doctor.The Conversation

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

 

RELATED

New psychology research flips the script on happiness and self-control
Memory

Deep sleep reorganizes brain networks used for memory recall

December 16, 2025
Scientists link common “forever chemical” to male-specific developmental abnormalities
Neuroimaging

New research maps how the brain processes different aspects of life satisfaction

December 13, 2025
Higher diet quality is associated with greater cognitive reserve in midlife
Sleep

Pre-workout supplements linked to dangerously short sleep in young people

December 12, 2025
Scientists just uncovered a major limitation in how AI models understand truth and belief
Cognitive Science

Study reveals visual processing differences in dyslexia extend beyond reading

December 11, 2025
Humans have an internal lunar clock, but we are accidentally destroying it
Cognitive Science

Humans have an internal lunar clock, but we are accidentally destroying it

December 10, 2025
Alcohol use disorder may exacerbate Alzheimer’s disease through shared genetic pathways
Addiction

Alcohol use disorder triggers a distinct immune response linked to neurodegeneration

December 10, 2025
From tango to StarCraft: Creative activities linked to slower brain aging, according to new neuroscience research
Cognitive Science

New neuroscience research reveals surprising biological link between beauty and brain energy

December 9, 2025
Childhood adversity linked to poorer cognitive function across different patterns of aging
Memory

Neuroscientists discover that letting the mind wander may aid passive learning

December 8, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Deep sleep reorganizes brain networks used for memory recall

Volume reduction in amygdala tracks with depression relief after ketamine infusions

Couples share a unique form of contagious forgetting, new research suggests

Naturalistic study reveals nuanced cognitive effects of cannabis on frequent older users

New study identifies five strategies women use to detect deception in dating

The mood-enhancing benefits of caffeine are strongest right after waking up

New psychology research flips the script on happiness and self-control

Disrupted sleep might stop the brain from flushing out toxic waste

RSS Psychology of Selling

  • Brain scans reveal increased neural effort when marketing messages miss the mark
  • Mental reconnection in the morning fuels workplace proactivity
  • The challenge of selling the connected home
  • Consumers prefer emotionally intelligent AI, but not for guilty pleasures
  • Active listening improves likability but does not enhance persuasion
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy