Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health Addiction

Addiction’s blueprint: The profound impact of alcohol and drugs on gene expression in the brain

by Karla Kaun
March 10, 2024
in Addiction
(Photo credit: Adobe Stock)

(Photo credit: Adobe Stock)

Share on TwitterShare on Facebook

Many people are wired to seek and respond to rewards. Your brain interprets food as rewarding when you are hungry and water as rewarding when you are thirsty. But addictive substances like alcohol and drugs of abuse can overwhelm the natural reward pathways in your brain, resulting in intolerable cravings and reduced impulse control.

A popular misconception is that addiction is a result of low willpower. But an explosion of knowledge and technology in the field of molecular genetics has changed our basic understanding of addiction drastically over the past decade. The general consensus among scientists and health care professionals is that there is a strong neurobiological and genetic basis for addiction.

As a behavioral neurogeneticist leading a team investigating the molecular mechanisms of addiction, I combine neuroscience with genetics to understand how alcohol and drugs influence the brain. In the past decade, I have seen changes in our understanding of the molecular mechanisms of addiction, largely due to a better understanding of how genes are dynamically regulated in the brain. New ways of thinking about how addictions form have the potential to change how we approach treatment.

Alcohol and drugs affect brain gene activity

Each of your brain cells has your genetic code stored in long strands of DNA. For all that DNA to fit into a cell, it needs to be packed tightly. This is achieved by winding the DNA around “spools” of protein called histones. Areas where DNA is unwound contain active genes coding for proteins that serve important functions within the cell.

When gene activity changes, the proteins your cells produce also change. Such changes can range from a single neuronal connection in your brain to how you behave. This genetic choreography suggests that while your genes affect how your brain develops, which genes are turned on or off when you are learning new things is dynamic and adapts to suit your daily needs.

Recent data from animal models suggests that alcohol and drugs of abuse directly influence changes in gene expression in areas of the brain that help drive memory and reward responses.

There are many ways addictive substances can change gene expression. They can alter which proteins bind to DNA to turn genes on and off and which segments of DNA are unwound. They can change the process of how DNA is read and translated into proteins, as well as alter the proteins that determine how cells use energy to function.

For example, alcohol can cause an alternative form of a gene to be expressed in the memory circuits in flies and people, resulting in changes in dopamine receptors and transcription factors involved in reward signaling and neuronal function. Similarly, cocaine can cause an alternative form of a gene to be expressed in the reward centers of mice, leading them to seek out more cocaine.

Exactly how these drugs cause changes in gene regulation is unknown. However, a direct link between alcohol consumption and changes in gene expression in mice provides a clue. A byproduct of alcohol being broken down in the liver called acetate can cross the blood-brain barrier and unwind DNA from histones in mouse memory circuits.

Alcohol, nicotine, cocaine and opioids also all activate important signaling pathways that are central regulators of metabolism. This suggests they can also affect many aspects of neuronal function and consequently affect which genes are expressed.

Changing brain gene activity with lifestyle

How addictive substances change cell function is complex. The version of a gene you’re born with can be modified in many ways before it becomes a functional protein, including exposure to alcohol and drugs. Rather than discouraging researchers, this complexity is empowering because it provides evidence that changes to gene expression in your brain aren’t permanent. They can also be altered by medications and lifestyle choices.

Many commonly prescribed medications for mental health disorders also affect gene expression. Antidepressants and mood stabilizers can change how DNA is modified and which genes are expressed. For example, a commonly prescribed drug for depression called escitalopram affects how tightly wound DNA is and can change the expression of genes important to brain plasticity.

Additionally, mRNA-based therapies can specifically change which genes are expressed to treat diseases like cancer. In the future, we may discover similar therapies for alcohol and substance use disorder. These treatments could potentially target important signaling pathways linked to addiction, altering how brain circuits function and how alcohol and drugs affect them.

Lifestyle choices can also affect gene expression in your brain, though researchers don’t yet know whether they can alter the changes induced by addictive substances.

Like alcohol and drugs, dietary changes can affect gene expression in many ways. In flies, a high sugar diet can reprogram the ability to taste sweetness by tapping into a gene expression network involved in development.

Intensive meditation, even after only one day, can also affect gene regulation in your brain through similar mechanisms. Attending a monthlong meditation retreat reduces the expression of genes that affect inflammation, and experienced meditators can reduce inflammatory genes after just one day of intensive meditation.

Work in animal models has also shown that exercise changes gene expression by altering both histones and the molecular tags directly attached to DNA. This increases the activity of genes important to the activity and plasticity of neurons, supporting the idea that exercise improves learning and memory and can decrease the risk of dementia.

From Dry January and beyond, many factors can have profound effects on your brain biology. Taking steps to reduce consumption of alcohol and drugs and picking up healthy lifestyle practices can help stabilize and bring long-lasting benefits for your physical and mental health.The Conversation

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

RELATED

Researchers identify neural mechanism behind memory prioritization
Addiction

Neuroscientists link a common inflammatory molecule to the dopaminergic mechanisms of addiction

January 11, 2026
Biden voters were much more likely to report negative voting than Trump voters in the 2020 election
Addiction

Sudden drop in fentanyl overdose deaths linked to Biden-era global supply shock

January 8, 2026
Cannabidiol shows promise for treating Alzheimer’s in mice by targeting brain hyperactivity
Addiction

Cannabidiol may prevent sensitization to cocaine and caffeine by influencing brain structure genes

December 31, 2025
New study claims antidepressant withdrawal is less common than thought. But there’s a big problem
Addiction

Epilepsy drug topiramate shows mixed results for treating combined alcohol and tobacco use

December 24, 2025
Competitive athletes exhibit lower off-field aggression and enhanced brain connectivity
Attachment Styles

Distinct personality traits found in those who use sex to cope

December 23, 2025
Cannabidiol may ease Alzheimer’s-related brain inflammation and improve cognition
Addiction

Non-intoxicating cannabis compound may reverse opioid-induced brain changes

December 19, 2025
Stress-induced “fixated” eating patterns linked to dopamine disruption, study finds
Addiction

Scientists explain why nothing feels quite like the first time by tracking dopamine during fly sex

December 19, 2025
Ayahuasca retreat participants report greater gratitude and nature appreciation after the experience, study finds
Addiction

Recent LSD use linked to lower odds of alcohol use disorder

December 15, 2025

PsyPost Merch

STAY CONNECTED

LATEST

How the words people use reveal hidden patterns of personality dysfunction

Women prefer masculine faces only when they appear safe

How scientists are growing computers from human brain cells – and why they want to keep doing it

Emotional regulation skills predict lower anxiety and aggression in adolescents

How musical genre and familiarity shape your inner thoughts

New research reveals a psychological shift triggered by the 2008 Great Recession

Neuroscientists link a common inflammatory molecule to the dopaminergic mechanisms of addiction

Psychopathic women are more likely to use physical aggression

RSS Psychology of Selling

  • Researchers track how online shopping is related to stress
  • New study reveals why some powerful leaders admit mistakes while others double down
  • Study reveals the cycle of guilt and sadness that follows a FOMO impulse buy
  • Why good looks aren’t enough for virtual influencers
  • Eye-tracking data shows how nostalgic stories unlock brand memory
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy