Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Aviation Psychology and Human Factors

Brain changes in fighter pilots may cast light on astronauts during space travel

by Conn Hastings
February 23, 2023
in Aviation Psychology and Human Factors, Cognitive Science
Share on TwitterShare on Facebook

Understanding the effects of space travel will help us to plan long-haul space flights, but getting access to astronauts is not easy. A new study investigates whether F16 fighter pilots demonstrate brain connectivity changes that could be expected in astronauts, based on similar exposure to changes in g-forces. The study found that the pilots showed key changes in brain connectivity and they may function as suitable test subjects to learn more about space travel.

One cannot explore the profound mysteries of space without being changed by it. This is the message underlying a new study in Frontiers in Physiology.

The study examined the brains of F16 fighter pilots, which have a lot in common with those of astronauts in terms of adapting to altered gravity levels and rapidly processing conflicting sensory information. MRI scans revealed that pilots with more flight experience showed specific brain connectivity patterns in areas related to processing sensorimotor information. They also showed differences in brain connectivity compared with non-pilots. The study will help us to understand the effects of space flight on the brain and may aid in providing better training programs for pilots or astronauts.

Spaceships: a rollercoaster for the brain

Blasting off into space places significant demands on the body and mind. These include altered levels of gravity, from the g-forces present during blast-off to the low-gravity environment in space. Other issues include rapidly interpreting sensory and visual stimuli that are sometimes conflicting, while controlling a complex vehicle at extreme speeds.


Read original article

Download original article (pdf)


These factors are a potent cocktail, and previous research has suggested that the brain may undergo structural and functional changes after space flight and astronaut training, in a process called neural plasticity. Understanding these changes could help us to better prepare astronauts for long journeys, which is crucial if we are ever to reach other planets.

A pilot study

Given that astronauts are a rare commodity, the researchers behind the current study hypothesized that studying the brain in members of a somewhat similar profession may provide the answers they need. “Fighter pilots have some interesting similarities with astronauts, such as exposure to altered g-levels, and the need to interpret visual information and information coming from head movements and acceleration (vestibular information),” said Prof Floris Wuyts of the University of Antwerp, senior author on the study. “By establishing the specific brain connectivity characteristics of fighter pilots, we can gain more insight into the condition of astronauts after spaceflight.”

To investigate this, the researchers recruited 10 fighter jet pilots from the Belgian Air Force, alongside a control group of 10 non-pilots, and performed MRI scans of their brains to establish the first ever study of functional brain connectivity in fighter pilots.

Adapting to extreme demands

Interestingly, the researchers found differences in brain connectivity between experienced and less experienced pilots, suggesting that brain changes occur with an increased number of flight hours. These differences included less connectivity in certain areas of the brain processing sensorimotor information, which may indicate the brain adapting to cope with the extreme conditions experienced during flight.

Experienced pilots also demonstrated increased connectivity in frontal areas of the brain that are likely involved in the cognitive demands of flying a complicated jet. When comparing pilots and non-pilots, the researchers found that areas of the brain processing vestibular and visual information were more connected in pilots. This may reflect the requirements for pilots to cope with processing multiple and occasionally conflicting visual and vestibular stimuli at once and to prioritize the most important stimuli, such as reading cockpit instruments.

“By demonstrating that vestibular and visual information is processed differently in pilots compared to non-pilots, we can recommend that pilots are a suitable study group to gain more insight into the brain’s adaptations toward unusual gravitational environments, such as during spaceflight,” said Dr Wilhelmina Radstake, first author on the study who conducted a Master’s thesis on this topic in Prof Wuyt’s lab.

RELATED

Eye-tracking study reveals which facial features truly matter in attraction
Cognitive Science

Your body’s hidden reaction to musical rhythm involves your eyes

November 24, 2025
Study identifies creativity and resilience as positive aspects of ADHD diagnosis
Cognitive Science

Musicians possess a superior internal map of their body in space

November 22, 2025
Analysis of 45 serial killers sheds new light on the dark psychology of sexually motivated murderers
Cognitive Science

New research reveals the cognitive hurdles created by our number systems

November 21, 2025
Scientists identify a mysterious brain signal tied to stress and hormone pulses
Cognitive Science

Groundbreaking new research challenges 20-year-old theory on dopamine and obesity

November 21, 2025
Scientists identify distinct neural dynamics linked to general intelligence
Cognitive Science

Scientists identify distinct neural dynamics linked to general intelligence

November 21, 2025
Scientists discover a pet’s fascinating “afterglow effect” on romantic couples
Cognitive Science

How you bet after a win may depend on your personality and intelligence

November 20, 2025
New psychology research sheds light on the mystery of deja vu
Cognitive Science

New psychology research sheds light on the mystery of deja vu

November 20, 2025
The disturbing impact of exposure to 8 minutes of TikTok videos revealed in new study
Cognitive Science

Active short video use linked to altered attention and brain connectivity

November 18, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Your body’s hidden reaction to musical rhythm involves your eyes

A mathematical ceiling limits generative AI to amateur-level creativity

Is sexual compatibility fated or forged? Your answer may shape your relationship’s future

Antidepressants may improve mood weeks earlier than standard tests suggest

Childhood maltreatment linked to poorer cognitive performance in young adulthood and later midlife

Semaglutide improves biomarkers but fails to preserve memory in Alzheimer’s patients

Gratitude exercises may help the heart recover from stress

Masturbation shows promise in alleviating women’s menopausal symptoms

RSS Psychology of Selling

  • Research reveals a hidden trade-off in employee-first leadership
  • The hidden power of sequence in business communication
  • What so-called “nightmare traits” can tell us about who gets promoted at work
  • What 5,000 tweets reveal about the reality of Black Friday deals
  • A bad mood might not hurt your work productivity as much as you think
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy