Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Delving deep into the brain: BRAIN Initiative to revolutionize our understanding of cognition

by Massachusetts Institute of Technology
May 1, 2014
in Cognitive Science
Share on TwitterShare on Facebook
Follow PsyPost on Google News

Launched in 2013, the national BRAIN Initiative aims to revolutionize our understanding of cognition by mapping the activity of every neuron in the human brain, revealing how brain circuits interact to create memories, learn new skills, and interpret the world around us.

Before that can happen, neuroscientists need new tools that will let them probe the brain more deeply and in greater detail, says Alan Jasanoff, an MIT associate professor of biological engineering. “There’s a general recognition that in order to understand the brain’s processes in comprehensive detail, we need ways to monitor neural function deep in the brain with spatial, temporal, and functional precision,” he says.

Jasanoff and colleagues have now taken a step toward that goal: They have established a technique that allows them to track neural communication in the brain over time, using magnetic resonance imaging (MRI) along with a specialized molecular sensor. This is the first time anyone has been able to map neural signals with high precision over large brain regions in living animals, offering a new window on brain function, says Jasanoff, who is also an associate member of MIT’s McGovern Institute for Brain Research.

His team used this molecular imaging approach, described in the May 1 online edition of Science, to study the neurotransmitter dopamine in a region called the ventral striatum, which is involved in motivation, reward, and reinforcement of behavior. In future studies, Jasanoff plans to combine dopamine imaging with functional MRI techniques that measure overall brain activity to gain a better understanding of how dopamine levels influence neural circuitry.

“We want to be able to relate dopamine signaling to other neural processes that are going on,” Jasanoff says. “We can look at different types of stimuli and try to understand what dopamine is doing in different brain regions and relate it to other measures of brain function.”

Tracking dopamine

Dopamine is one of many neurotransmitters that help neurons to communicate with each other over short distances. Much of the brain’s dopamine is produced by a structure called the ventral tegmental area (VTA). This dopamine travels through the mesolimbic pathway to the ventral striatum, where it combines with sensory information from other parts of the brain to reinforce behavior and help the brain learn new tasks and motor functions. This circuit also plays a major role in addiction.

To track dopamine’s role in neural communication, the researchers used an MRI sensor they had previously designed, consisting of an iron-containing protein that acts as a weak magnet. When the sensor binds to dopamine, its magnetic interactions with the surrounding tissue weaken, which dims the tissue’s MRI signal. This allows the researchers to see where in the brain dopamine is being released. The researchers also developed an algorithm that lets them calculate the precise amount of dopamine present in each fraction of a cubic millimeter of the ventral striatum.

After delivering the MRI sensor to the ventral striatum of rats, Jasanoff’s team electrically stimulated the mesolimbic pathway and was able to detect exactly where in the ventral striatum dopamine was released. An area known as the nucleus accumbens core, known to be one of the main targets of dopamine from the VTA, showed the highest levels. The researchers also saw that some dopamine is released in neighboring regions such as the ventral pallidum, which regulates motivation and emotions, and parts of the thalamus, which relays sensory and motor signals in the brain.

Each dopamine stimulation lasted for 16 seconds and the researchers took an MRI image every eight seconds, allowing them to track how dopamine levels changed as the neurotransmitter was released from cells and then disappeared. “We could divide up the map into different regions of interest and determine dynamics separately for each of those regions,” Jasanoff says.

He and his colleagues plan to build on this work by expanding their studies to other parts of the brain, including the areas most affected by Parkinson’s disease, which is caused by the death of dopamine-generating cells. Jasanoff’s lab is also working on sensors to track other neurotransmitters, allowing them to study interactions between neurotransmitters during different tasks.

RELATED

What we know about a person changes how our brain processes their face
Cognitive Science

What we know about a person changes how our brain processes their face

August 1, 2025

Researchers have found that social knowledge shapes how the brain represents familiar faces. Participants who understood a character’s story showed stronger brain activity in regions linked to identity and memory, even though everyone saw the same faces the same amount.

Read moreDetails
Positive attitudes toward AI linked to problematic social media use
Cognitive Science

Your brain sequences speech in a place scientists long overlooked

July 30, 2025

A groundbreaking study from UCSF challenges the long-standing belief that Broca’s area is the brain’s speech planner. Researchers have identified the middle precentral gyrus as a key player in sequencing speech sounds, offering new insights into speech disorders and communication.

Read moreDetails
Fascinating new neuroscience study shows the brain emits light through the skull
Cognitive Science

Fascinating new neuroscience study shows the brain emits light through the skull

July 26, 2025

Scientists found that the human brain emits faint light that passes through the skull and changes during different mental states, suggesting it might be possible to monitor brain activity using light instead of electricity or magnetism.

Read moreDetails
Zapping the brain’s prefrontal cortex with electricity helps people learn math
Cognitive Science

Zapping the brain’s prefrontal cortex with electricity helps people learn math

July 24, 2025

Many adults struggle with math, a gap that often begins in school. A new study offers a potential solution: a painless brain stimulation technique that was shown to significantly improve learning, especially for those who find the subject most difficult.

Read moreDetails
Older adults consuming more spermidine have better cognitive performance
Cognitive Science

Older adults consuming more spermidine have better cognitive performance

July 23, 2025

New research suggests that diets higher in spermidine—a compound found in foods like mushrooms and whole grains—may be linked to stronger cognitive abilities in older adults, especially among men and those with certain chronic health conditions or elevated body mass.

Read moreDetails
New research sheds light on cannabinoids’ impact on anxiety during alcohol withdrawal
Cannabis

Surprising study suggests cannabis can improve some types of memory in the aging brain

July 22, 2025

Does cannabis help or harm memory in older age? A new study in rats suggests the answer is complex. Researchers found THC’s effects depended on sex and delivery method, improving working memory in some cases while impairing it in others.

Read moreDetails
Cognitive tests suggest psilocybin impairs thinking—but the tests may not tell the full story
Cognitive Science

Cognitive tests suggest psilocybin impairs thinking—but the tests may not tell the full story

July 21, 2025

People under the influence of psilocybin perform more slowly on tasks measuring attention and executive function. But a new study suggests the problem might not be the drug—it might be the traditional lab tests used to assess cognition.

Read moreDetails
Scientists reveal a widespread but previously unidentified psychological phenomenon
Cognitive Science

Attention deficits may linger for months in COVID-19 survivors, even after physical recovery

July 20, 2025

Many people hospitalized with COVID-19 still had trouble focusing and reacting quickly three months after discharge, even if they seemed physically recovered. These attention problems could affect daily tasks like driving or working.

Read moreDetails

STAY CONNECTED

LATEST

The ADHD symptom no one talks about: rejection sensitive dysphoria

How stress affects us may depend on the balance between testosterone and cortisol

Women who fake orgasm tend to struggle with emotional clarity and impulse control, study finds

What we know about a person changes how our brain processes their face

Dementia diagnoses are often delayed for years, new study finds

Are “zombie cells” in your blood vessels driving long-COVID and chronic fatigue?

Prenatal BPA exposure linked to schizophrenia-like brain changes

New study links low self-efficacy to bedtime procrastination

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy