Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Psychopharmacology Cannabis

High-potency cannabis use leaves a distinct mark on DNA

by Marta Di Forti and Emma Dempster
November 25, 2024
in Cannabis
(Photo credit: Elsa Olofsson)

(Photo credit: Elsa Olofsson)

Share on TwitterShare on Facebook
Follow PsyPost on Google News

Cannabis is one of the most commonly used drugs in the world. Yet there’s still much we don’t know about it and what effects it has on the brain – including why cannabis triggers psychosis in some people who use the drug. But our recent study has just brought us closer to understanding the biological impact of high-potency cannabis use.

Published in the journal Molecular Psychiatry, our study demonstrates that high-potency cannabis leaves a distinct mark on DNA. We also found that these DNA changes were different in people experiencing their first episode of psychosis compared to users who’d never experienced psychosis. This suggests looking at how cannabis use modifies DNA could help identify those most at risk of developing psychosis.

The amount of THC (Delta-9_tetrahydrocannabinol), the main ingredient in cannabis that makes people feel “high”, has been steadily increasing since the 1990s in the UK and US. In Colorado, where the drug is legal, it’s possible to buy cannabis with 90% THC. While THC is one of over 144 other chemicals found in the cannabis plant, it’s the primary compound used to estimate the potency of cannabis.

Many studies have shown that the greater the THC concentration, the stronger the effects on the user. For example, research has found that people who use high-potency cannabis (with THC of 10% or more) daily are five times more likely to develop a psychotic disorder compared to people who have never used cannabis.

Psychotic disorders associated with daily use of high-potency cannabis often manifest through a range of symptoms. These can include auditory hallucinations (hearing voices that others cannot hear), delusions of persecution (feeling the target of a conspiracy without evidence) and paranoia (perceiving the environment as hostile and interpreting interactions suspiciously). These are all very distressing and disabling experiences.

Our study aimed the explore the mark that current cannabis use leaves on the DNA. We also wanted to understand if this mark is specific to high-potency cannabis use – and if this might help to identify those users at greater risk of experiencing psychosis.

To do this, we examined the effects of cannabis use on an molecular process called DNA methylation. DNA methylation is a chemical process that regulates gene activity by turning genes on or off and controlling how genes are expressed without changing the structure of the DNA itself. DNA methylation is just one of the many mechanisms that regulate gene activity and are part of an important biological process known as epigenetics. Epigenetics underpin the interplay between our environment, the lifestyle choices we make (such as using cannabis or exercising) and our physical and mental health.

While previous studies have investigated the impact of lifetime cannabis use on DNA methylation, they haven’t explored what effect regular use of different cannabis potencies has on this process. Nor have they explored how this affects with people who have psychosis.

Our study combined data from two large first case-control studies: the Genetic and Psychosis study, which was conducted in south London, and the EU-GEI study, which included participants from England, France, the Netherlands, Italy, Spain and Brazil. Both of these studies collected data on people experiencing their first episode of psychosis and participants who had no health problems and represented the local population.

In total, we looked at 239 people who were experiencing their first episode of psychosis and 443 healthy volunteers. Around 65% of participants were male. Participants ranged in age 16-72. All participants provided information on their cannabis use, as well as DNA samples from their blood.

Around 38% of participants were using cannabis more than once a week. Of those who had used cannabis, the majority had been using high-potency cannabis more than once a week – and had started when they were around 16 years old.

Analyses of DNA methylation were then performed across multiple parts of the whole genome. The analysis took into account the potential impact of several biological and environmental confounders that may have affected the results – such as age, gender, ethnicity, tobacco smoking and the cellular makeup of each blood sample.

DNA signature

Our findings revealed that using high-potency cannabis alters DNA methylation – particularly in genes related to energy and immune system functions. This was true for participants who had used high-potency cannabis. However, people who had experienced psychosis had a different signature of alteration in their DNA.

These epigenetic changes show how external factors (like drug use) can alter how genes work. Very importantly, these changes were not explained by tobacco – which is usually mixed into joints by many cannabis users, and is known to alter DNA methylation.

This finding also highlights epigenetic changes as a potential link between high-potency cannabis and psychosis. DNA methylation, which bridges the gap between genetics and environmental factors, is a key mechanism that allows external influences (such as substance use) to impact gene activity. By studying epigenetic changes, researchers may be able to develop a greater understanding on how cannabis use – particularly high-potency types – can influence specific biological pathways. This may in turn help us understand why some cannabis users are at increased risk of psychosis.

We hope that our findings will help scientists to better understand how cannabis use can affect the body’s biology. Future research should now investigate whether the DNA methylation patterns associated with cannabis use can serve as biomarkers to identify users at higher risk of developing psychosis. This could lead to more targeted prevention strategies and inform safer cannabis use practices.The Conversation

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

TweetSendScanShareSendPin7ShareShareShareShareShare

RELATED

Cannabis intoxication alters metabolism, but frequent users show fewer effects
Cannabis

Regular cannabis use linked to changes in brain activity regulating movement

June 20, 2025

Researchers have discovered that frequent cannabis users show reduced spontaneous brain activity in the motor cortex, and this neural suppression is tied to cannabis use severity and response speed, even though overall task performance remained comparable to non-users.

Read moreDetails
Cannabis and appetite: Scientists uncover the brain mechanism behind the munchies
Cannabis

The ‘entourage effect’ — what we don’t know about how cannabis works

June 2, 2025

Cannabis products promise custom experiences based on compound profiles, but the science behind these claims remains limited. While ideas like the “entourage effect” are popular, research on how cannabis compounds interact in humans is still in its early stages.

Read moreDetails
Cannabidiol shows promise for treating Alzheimer’s in mice by targeting brain hyperactivity
Alzheimer's Disease

Cannabidiol shows promise for treating Alzheimer’s in mice by targeting brain hyperactivity

May 26, 2025

In a study using an Alzheimer’s disease mouse model, researchers found that cannabidiol reduced memory loss and brain abnormalities. The compound worked by enhancing the function of glycine receptors, which help regulate neuronal activity in the brain's memory center.

Read moreDetails
CBD enhances verbal episodic memory — potentially counteracting the memory impairments associated with THC
Cannabis

Cannabidiol boosts social learning by enhancing brain acetylcholine signaling, study finds

May 11, 2025

Cannabidiol appears to improve social memory in mice, according to new research in Psychopharmacology. The study shows that CBD enhances the ability to remember food-related information from peers by increasing acetylcholine activity in the basal forebrain.

Read moreDetails
Researchers uncover causal evidence that cannabis legalization reduces problematic consumption
Cannabis

Researchers uncover causal evidence that cannabis legalization reduces problematic consumption

May 8, 2025

Researchers in Switzerland have completed the first randomized trial comparing legal and illegal cannabis use. The study suggests that public health-oriented cannabis access may help reduce misuse, particularly among people with more complex patterns of drug use.

Read moreDetails
Around 27% of individuals with ADHD develop cannabis use disorder at some point in their lives, study finds
Cannabis

Daily use of cannabis is strongly associated with chronic inflammation, study finds

May 6, 2025

A new study suggests daily cannabis use may be linked to chronic inflammation. Researchers found that young adults who used cannabis frequently had higher levels of suPAR, an inflammatory marker, while occasional users did not.

Read moreDetails
CBD amplifies THC’s impact instead of mitigating it, new cannabis research reveals
Addiction

N-acetylcysteine does not appear to be effective for cannabis use disorder

May 4, 2025

In a study of young people with cannabis use disorder, N-acetylcysteine failed to outperform a placebo in reducing cannabis use, suggesting that the supplement may not be effective unless combined with more intensive behavioral interventions like contingency management.

Read moreDetails
Cannabis use linked to binge eating among young adult women, new research finds
Cannabis

Cannabis use linked to binge eating among young adult women, new research finds

April 27, 2025

Young women who use cannabis may face an elevated risk of binge eating, a new study finds. The link remained even after controlling for depressive symptoms and other factors.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Maximization style and social media addiction linked to relationship obsessive compulsive disorder

Video games calm the body after stress, even when players feel on edge

Reading fiction fights loneliness and builds a healthier brain

Youth with psychopathic traits at increased risk of dying young, study finds

Critical thinking and academic achievement reinforce each other over time, study finds

Exposure to heavy metals is associated with higher likelihood of ADHD diagnosis

Eye-tracking study shows people fixate longer on female aggressors than male ones

Romantic breakups follow a two-stage decline that begins years before the split, study finds

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy