Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

New technique captures the activity of an entire brain in a snapshot

by Rockefeller University
May 26, 2016
in Cognitive Science
(Photo credit: J E Theriot)

(Photo credit: J E Theriot)

Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

When it comes to measuring brain activity, scientists have tools that can take a precise look at a small slice of the brain (less than one cubic millimeter), or a blurred look at a larger area. Now, researchers at Rockefeller University have described a new technique that combines the best of both worlds–it captures a detailed snapshot of global activity in the mouse brain.

“We wanted to develop a technique that would show you the level of activity at the precision of a single neuron, but at the scale of the whole brain,” says study author Nicolas Renier, a postdoctoral fellow in the lab of Marc Tessier-Lavigne, professor of the Laboratory of Brain Development and Repair, and president of Rockefeller University.

The new method, described online on May 26 in Cell, takes a picture of all the active neurons in the brain at a specific time. The mouse brain contains dozens of millions of neurons, and a typical image depicts the activity of approximately one million neurons, says Tessier-Lavigne. “The purpose of the technique is to accelerate our understanding of how the brain works.”

Making brains transparent

“Because of the nature of our technique, we cannot visualize live brain activity over time–we only see neurons that are active at the specific time we took the snapshot,” says Eliza Adams, a graduate student in Tessier-Lavigne’s lab and co-author of the study. “But what we gain in this trade-off is a comprehensive view of most neurons in the brain, and the ability to compare these active neuronal populations between snapshots in a robust and unbiased manner.”

Here’s how the tool works: The researchers expose a mouse to a situation that would provoke altered brain activity–such as taking an anti-psychotic drug, brushing whiskers against an object while exploring, and parenting a pup–then make the measurement after a pause. The pause is important, explains Renier, because the technique measures neuron activity indirectly, via the translation of neuronal genes into proteins, which takes about 30 minutes to occur.

The researchers then treat the brain to make it transparent–following an improved version of a protocol called iDISCO, developed by Zhuhao Wu, a postdoctoral associate in the Tessier-Lavigne lab–and visualize it using light-sheet microscopy, which takes the snapshot of all active neurons in 3D.

To determine where an active neuron is located within the brain, Christoph Kirst, a fellow in Rockefeller’s Center for Studies in Physics and Biology, developed software to detect the active neurons and to automatically map the snapshot to a 3D atlas of the mouse brain, generated by the Allen Brain Institute.

Although each snapshot of brain activity typically includes about one million active neurons, researchers can sift through that mass of data relatively quickly if they compare one snapshot to another snapshot, says Renier. By eliminating the neurons that are active in both images, researchers are left only those specific to each one, enabling them to home in on what is unique to each state.

Observing and testing how the brain works

The primary purpose of the tool, he adds, is to help researchers generate hypotheses about how the brain functions that then can be tested in other experiments. For instance, using their new techniques, the researchers, in collaboration with Catherine Dulac and other scientists at Harvard University, observed that when an adult mouse encounters a pup, a region of its brain known to be active during parenting–called the medial pre-optic nucleus, or MPO–lights up. But they also observed that, after the MPO area becomes activated, there is less activity in the cortical amygdala, an area that processes aversive responses, which they found to be directly connected to the MPO “parenting region”.

“Our hypothesis,” says Renier, “is that parenting neurons put the brake on activity in the fear region, which may suppress aversive responses the mice may have towards pups.” Indeed, mice that are being aggressive to pups tend to show more activity in the cortical amygdala.

To test this idea, the next step is to block the activity of this brain region to see if this reduces aggression in the mice, says Renier.

The technique also has broader implications than simply looking at what areas of the mouse brain are active in different situations, he adds. It could be used to map brain activity in response to any biological change, such as the spread of a drug or disease, or even to explore how the brain makes decisions. “You can use the same strategy to map anything you want in the mouse brain,” says Renier.

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Brain oscillations reveal dynamic shifts in creative thought during metaphor generation
Cognitive Science

Brain oscillations reveal dynamic shifts in creative thought during metaphor generation

May 19, 2025

A new study reveals that creative metaphor generation involves shifting patterns of brain activity, with alpha oscillations playing a key role at different stages of the process, offering fresh insight into the neural dynamics behind verbal creativity.

Read moreDetails
Surprisingly widespread brain activity supports economic decision-making, new study finds
Cognitive Science

Surprisingly widespread brain activity supports economic decision-making, new study finds

May 19, 2025

A new study using direct brain recordings reveals that human economic decision-making is not localized to a single brain region. Instead, multiple areas work together, with high-frequency activity encoding risk, reward probability, and the final choice itself.

Read moreDetails
Scientists use brain activity to predict StarCraft II skill in fascinating new neuroscience research
Cognitive Science

Scientists use brain activity to predict StarCraft II skill in fascinating new neuroscience research

May 16, 2025

A study combining brain scans and gameplay data reveals that players with more efficient visual attention and stronger white matter connections excel at StarCraft II. The results highlight how neural traits shape success in cognitively demanding video games.

Read moreDetails
Neuroscientists discover music’s hidden power to reshape memory
Memory

Neuroscientists discover music’s hidden power to reshape memory

May 14, 2025

A new neuroimaging study reveals that listening to emotionally charged music during memory recall can change how we remember events. The music not only shaped what participants remembered but also altered the emotional tone of their memories one day later.

Read moreDetails
Study links anomalous experiences to subconscious connectedness and other psychological traits
Cognitive Science

Study links anomalous experiences to subconscious connectedness and other psychological traits

May 13, 2025

A new study suggests that unusual experiences like déjà vu or premonitions are not only common but linked to a distinct psychological trait called subconscious connectedness. Researchers found that people high in this trait reported significantly more anomalous experiences.

Read moreDetails
Eye-tracking study suggests that negative comments on social media are more attention-grabbing than positive comments
Cognitive Science

Can you train your brain to unsee optical illusions? Scientists think so

May 12, 2025

A recent study found that radiologists are less susceptible to optical illusions, likely due to their intensive visual training. The research challenges long-standing beliefs that illusions are automatic and suggests perceptual skills can be shaped over time.

Read moreDetails
Diets high in fat and sugar appear to harm cognitive function
Cognitive Science

Diets high in fat and sugar appear to harm cognitive function

May 10, 2025

Consuming a Western-style diet packed with sugar and saturated fats may hurt your brain, not just your waistline. A new study shows poorer performance on spatial memory tasks among people with diets high in processed, unhealthy foods.

Read moreDetails
People with lower cognitive ability more likely to fall for pseudo-profound bullshit
Cognitive Science

People with lower cognitive ability more likely to fall for pseudo-profound bullshit

May 9, 2025

A new meta-analysis published in Applied Cognitive Psychology finds that people with lower cognitive ability are more likely to find meaning in pseudo-profound nonsense. The study identifies key psychological traits linked to susceptibility to feel-good but meaningless statements.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

New research reveals aging shifts gender stereotypes in unexpected ways

Optimistic individuals are more likely to respond to SSRI antidepressants

Brain oscillations reveal dynamic shifts in creative thought during metaphor generation

Surprisingly widespread brain activity supports economic decision-making, new study finds

Scientists finds altered attention-related brain connectivity in youth with anxiety

From fixed pulses to smart stimulation: Parkinson’s treatment takes a leap forward

New research challenges idea that female breasts are sexualized due to modesty norms

Mother’s childhood trauma linked to emotional and behavioral issues in her children, study finds

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy