Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Each part of the brain has its own rhythmic ‘fingerprint’

by The Conversation
July 2, 2016
in Cognitive Science
Photo credit: University of Pennsylvania

Photo credit: University of Pennsylvania

Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

Since Hans Berger first recorded neural activity from the human scalp with an electroencephalograph (EEG), in 1924, neuroscientists have been trying to make sense of the electrical pulses emitted by our grey matter. Recent studies have focused on brain oscillations (commonly called brain waves) which are thought to be the mechanism by which different brain regions communicate with each other. Our latest study has shed some light on these curious oscillations. We have discovered that each region of the brain has a uniquely identifiable pattern of oscillations – their own rhythmic fingerprint.

Berger was the first to notice that neural activity seems to fluctuate at a rate of 10 cycles per second. He called this rhythm the alpha-wave. Since then, the methods to identify rhythmic activity have improved considerably, from counting how often a wave fluctuates within a second, to elaborate mathematical procedures, called spectral analyses.

Alpha is still the most obvious oscillation, but other types of oscillations (faster and slower ones) have been discovered. Neuroscientists have already found out a lot about specific functions of these rhythms, but it is difficult to get a clear picture of oscillations as they seem to be distributed more or less randomly across the brain.

In our study, we looked for patterns in the occurrence of oscillations that would help us to get a more organised view of rhythmic brain activity. We recruited 22 volunteers to participate in the experiment. Their instruction was to rest for a few minutes, with open eyes, while their neural activity was recorded.

We used a magnetoencephalograph (MEG, the magnetic equivalent of EEG) to measure magnetic fields produced by neural activity. From the recording of the magnetic fields it is possible to infer where in the brain the activity came from. This spontaneous brain activity can then be analysed in terms of the rhythms that occur there. By observing these oscillations over several minutes, we found that each brain area has its own characteristic mix of different rhythms over time.

In some regions, for example the visual cortex, there would only be two relatively slow rhythms (cycling at about ten times per second – the alpha rhythm. But in other regions, for example in the middle of the brain that is involved in things such as movement, learning and reward, there would be up to nine rhythms at many different time scales. These different oscillations could reflect how a particular region communicates with other regions in the brain. This means that regions with many different rhythms might have more complex tasks that involve communication with many other parts of the brain.

Although people can be quite different from each other in terms of their brain anatomy, we found that these rhythmic fingerprints were very similar across our healthy volunteers. In fact, they were so similar that we could take new data from other participants and label their brain areas based only on their oscillations, without knowing where the oscillations came from.

Potential diagnostic tool

Now that we know what pattern of oscillations to expect in each part of the brain in young, healthy adults, it should be possible to find differences in patients with illnesses that are expressed in these oscillations. As patients only have to rest and are not required to perform any tasks, using this as a tool would be possible even with severely impaired people.

Through the detailed analysis of oscillations in each brain part, it is possible to find small abnormalities that are only apparent in one particular rhythm in one brain region. One potential application of this could be to identify abnormal oscillations in a specific brain area in a patient and then use electric or magnetic brain stimulation to modulate only these specific oscillations.

These kinds of noninvasive brain stimulation methods have already been proved successful in a few studies. For example, in patients with post-traumatic stress disorder, stimulating the frontal part of the brain with magnetic pulses has been shown to reduce their symptoms, improve mood and reduce anxiety. Knowing exactly how and where to stimulate brain oscillations in patients would be a big step towards improving these conditions.

The Conversation

By Anne Keitel, , University of Glasgow and Joachim Gross, Professor in Psychology, University of Glasgow

This article was originally published on The Conversation. Read the original article.

RELATED

People with higher intelligence make more accurate predictions about their lifespan
Cognitive Science

People with higher intelligence make more accurate predictions about their lifespan

August 2, 2025

New research helps explain why higher intelligence is linked to better life outcomes. The study shows that people with higher IQs form more accurate and stable beliefs about the world, leading to more realistic predictions and better decision-making.

Read moreDetails
What we know about a person changes how our brain processes their face
Cognitive Science

What we know about a person changes how our brain processes their face

August 1, 2025

Researchers have found that social knowledge shapes how the brain represents familiar faces. Participants who understood a character’s story showed stronger brain activity in regions linked to identity and memory, even though everyone saw the same faces the same amount.

Read moreDetails
Positive attitudes toward AI linked to problematic social media use
Cognitive Science

Your brain sequences speech in a place scientists long overlooked

July 30, 2025

A groundbreaking study from UCSF challenges the long-standing belief that Broca’s area is the brain’s speech planner. Researchers have identified the middle precentral gyrus as a key player in sequencing speech sounds, offering new insights into speech disorders and communication.

Read moreDetails
Fascinating new neuroscience study shows the brain emits light through the skull
Cognitive Science

Fascinating new neuroscience study shows the brain emits light through the skull

July 26, 2025

Scientists found that the human brain emits faint light that passes through the skull and changes during different mental states, suggesting it might be possible to monitor brain activity using light instead of electricity or magnetism.

Read moreDetails
Zapping the brain’s prefrontal cortex with electricity helps people learn math
Cognitive Science

Zapping the brain’s prefrontal cortex with electricity helps people learn math

July 24, 2025

Many adults struggle with math, a gap that often begins in school. A new study offers a potential solution: a painless brain stimulation technique that was shown to significantly improve learning, especially for those who find the subject most difficult.

Read moreDetails
Older adults consuming more spermidine have better cognitive performance
Cognitive Science

Older adults consuming more spermidine have better cognitive performance

July 23, 2025

New research suggests that diets higher in spermidine—a compound found in foods like mushrooms and whole grains—may be linked to stronger cognitive abilities in older adults, especially among men and those with certain chronic health conditions or elevated body mass.

Read moreDetails
New research sheds light on cannabinoids’ impact on anxiety during alcohol withdrawal
Cannabis

Surprising study suggests cannabis can improve some types of memory in the aging brain

July 22, 2025

Does cannabis help or harm memory in older age? A new study in rats suggests the answer is complex. Researchers found THC’s effects depended on sex and delivery method, improving working memory in some cases while impairing it in others.

Read moreDetails
Cognitive tests suggest psilocybin impairs thinking—but the tests may not tell the full story
Cognitive Science

Cognitive tests suggest psilocybin impairs thinking—but the tests may not tell the full story

July 21, 2025

People under the influence of psilocybin perform more slowly on tasks measuring attention and executive function. But a new study suggests the problem might not be the drug—it might be the traditional lab tests used to assess cognition.

Read moreDetails

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Only premium subscribers can comment — log in or join now.

STAY CONNECTED

LATEST

Single dose of CBD reduces alcohol craving and brain reactivity in alcoholics

Simple micro‑actions can boost psychological well‑being, new research suggests

People with higher intelligence make more accurate predictions about their lifespan

Microplastics found to obstruct brain blood vessels in troubling neuroscience study

Scientists map the visual patterns people use when evaluating others’ bodies

The ADHD symptom no one talks about: rejection sensitive dysphoria

How stress affects us may depend on the balance between testosterone and cortisol

Women who fake orgasm tend to struggle with emotional clarity and impulse control, study finds

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy