Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Music

Scientists team up with jazz musicians to reveal the neuroscience of creative flow

by Eric W. Dolan
March 6, 2024
in Music, Neuroimaging
(Photo credit: OpenAI's DALL·E)

(Photo credit: OpenAI's DALL·E)

Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

Have you ever found yourself so deeply absorbed in an activity that the world around you seemed to disappear? This state of intense focus and enjoyment, known as “flow,” has been a subject of fascination and study across various disciplines. A groundbreaking study published in the journal Neuropsychologia by researchers from Drexel University’s Creativity Research Lab sheds light on how our brains achieve this coveted state of creative flow.

Through examining jazz musicians during improvisation, the study reveals that the key to entering flow lies in a combination of extensive experience and the ability to “let go,” allowing for specialized brain networks to operate with minimal conscious oversight.

The research team, led by Drexel University professor John Kounios, sought to address a long-standing question in the fields of psychology and neuroscience: How does the human brain achieve a state of flow, particularly in creative endeavors?

Despite flow being a widely recognized and valued state of consciousness, characterized by an immersive sense of focus, enjoyment, and effortless productivity, there has been a significant gap in understanding the neurobiological underpinnings of this phenomenon. Previous research has offered various theories but lacked consensus, particularly regarding the role of focused attention versus the relaxation of executive control in initiating and maintaining flow.

“Flow was first identified and studied by the pioneering psychological scientist Mihaly Csikszentmihalyi,” said Kounios. “He defined it as ‘a state in which people are so involved in an activity that nothing else seems to matter; the experience is so enjoyable that people will continue to do it even at great cost, for the sheer sake of doing it.’”

The study was driven by the need to reconcile competing theories about the nature of flow. One theory posited that flow might be a hyper-focused state that excludes external distractions, enabling heightened performance. An alternative theory suggested that flow results from a combination of extensive expertise and a deliberate reduction of conscious oversight, allowing for more automatic, intuitive processes to lead.

At the heart of the investigation were thirty-two jazz guitarists, whose brain activities were recorded using high-density electroencephalograms (EEGs) while they engaged in musical improvisation tasks. This participant pool was carefully selected to cover a wide spectrum of experience levels, ranging from novices to seasoned professionals, allowing the researchers to examine the impact of expertise on the ability to achieve flow.

The experimental procedure began with each musician performing improvisations to six different jazz lead sheets, which included pre-recorded drum, bass, and piano accompaniments. These musical pieces were specially designed to present an equal level of challenge across all takes while incorporating familiar jazz patterns.

This setup aimed to simulate a live performance environment where musicians could naturally engage in the creative process. Following each improvisation, participants rated the intensity of their flow experience, providing subjective data on their state of immersion and enjoyment during the task.

To objectively evaluate the creative output, the 192 recorded improvisations were reviewed by four jazz experts, who were unaware of the study’s specific research questions to avoid bias. These judges rated each improvisation on creativity, aesthetic appeal, and technical proficiency using the Consensual Assessment Technique. This approach ensured a comprehensive assessment of the improvisations’ quality from both the performers’ and experienced observers’ perspectives.

In analyzing the EEG data, the researchers focused on identifying brain activity patterns associated with high and low flow states. This involved comparing the EEGs of improvisations rated as high-flow against those considered low-flow, while controlling for the musicians’ experience levels. Special attention was given to areas involved in auditory and tactile processing and regions associated with executive control, to test the hypothesis that flow state involves a reduction in conscious oversight (transient hypofrontality).

Moreover, advanced EEG source reconstruction techniques were utilized to pinpoint the neural origins of flow-related activity, offering insights into the large-scale brain networks implicated in creative flow.

The analysis of EEG data revealed that high-flow states, as self-reported by the musicians, were characterized by increased activity in the left-hemisphere regions associated with auditory and tactile processing, which are crucial for musical performance. This suggests that a high level of engagement with the task at a sensory level is a key component of the flow state.

More strikingly, high-flow states were also associated with decreased activity in the superior frontal gyri, a brain region implicated in executive functions and conscious control. This finding aligns with the concept of “transient hypofrontality” – the temporary downregulation of prefrontal cortex activity, theorized to reduce the cognitive load and allow for more fluid and intuitive task execution.

Furthermore, the study differentiated between musicians based on their level of experience, revealing that those with greater experience were more likely to enter high-flow states. This observation underscores the importance of domain-specific expertise as a prerequisite for achieving flow.

Expert musicians exhibited not only more frequent and intense flow experiences but also a distinct neural signature during these states, including reduced activity in the default-mode network (DMN), which is often associated with mind-wandering and self-referential thought processes. The reduction in DMN activity suggests that, for experts, entering a flow state means moving away from introspection and towards a more outward-focused engagement with the task.

Inner views of the left and right sides of the brain showing areas of reduced brain activity when the high-experience musicians were in a high-flow state (compared to a low-flow state). These areas include key nodes of the brain’s default-mode network. (Image provided by John Kounios)

Interestingly, the study also found that the low-experience musicians demonstrated little flow-related brain activity, highlighting the crucial role of expertise in facilitating the flow experience. The researchers propose that achieving flow requires not only the ability to engage deeply with the task at hand but also sufficient mastery over the domain to allow for the “letting go” of conscious control. This mastery enables the specialized neural circuits developed through extensive practice to take over, guiding the creative process more efficiently and intuitively.

“A practical implication of these results is that productive flow states can be attained by practice to build up expertise in a particular creative outlet coupled with training to withdraw conscious control when enough expertise has been achieved,” said Kounios. “This can be the basis for new techniques for instructing people to produce creative ideas.”

Kounios added, “If you want to be able to stream ideas fluently, then keep working on those musical scales, physics problems or whatever else you want to do creatively—computer coding, fiction writing—you name it. But then, try letting go. As jazz great Charlie Parker said, ‘You’ve got to learn your instrument. Then, you practice, practice, practice. And then, when you finally get up there on the bandstand, forget all that and just wail.’”

However, the study is not without its limitations. The specificity of the task (jazz improvisation) and the use of EEG, while insightful, may not fully capture the complexities of flow states across different creative domains or provide the spatial resolution to identify all relevant brain activity. Future research could expand the participant pool, explore other creative tasks, and employ methods like fMRI for more detailed brain imaging.

The study, “Creative flow as optimized processing: Evidence from brain oscillations during jazz improvisations by expert and non-expert musicians,” was authored by David Rosen, Yongtaek Oh, Christine Chesebrough, Fengqing (Zoe) Zhang, and John Kounios.

TweetSendScanShareSendPin7ShareShareShareShareShare

RELATED

Poor sleep may shrink brain regions vulnerable to Alzheimer’s disease, study suggests
Memory

Neuroscientists discover biological mechanism that helps the brain ignore irrelevant information

June 14, 2025

New research suggests the brain uses a learning rule at inhibitory synapses to block out distractions during memory replay. This process enables the hippocampus to prioritize useful patterns over random noise, helping build more generalizable and reliable memories.

Read moreDetails
Psilocybin appears to have a uniquely powerful relationship with nature relatedness
Neuroimaging

Psilocybin induces large-scale brain network reorganization, offering insights into the psychedelic state

June 14, 2025

A new study using high-resolution EEG reveals that psilocybin dramatically alters brain connectivity in rats. The psychedelic induced dose-dependent changes in network organization, disrupting normal patterns of neural communication and suggesting rodents may be viable models for studying altered consciousness.

Read moreDetails
Adversity in childhood linked to accelerated brain development
Early Life Adversity and Childhood Maltreatment

Adversity in childhood linked to accelerated brain development

June 12, 2025

New research using data from over 7,000 children suggests that adversity during late childhood accelerates brain network development. While these changes may buffer against anxiety and depression, they are also associated with poorer school performance.

Read moreDetails
Democrats dislike Republicans more than Republicans dislike Democrats, studies find
Cognitive Science

New neuroscience study reveals sex-specific brain responses to threat

June 11, 2025

A new study shows that male and female mice engage distinct brain circuits when responding to threat, challenging the assumption that similar behavior reflects identical brain function. The findings highlight the need for sex-inclusive neuroscience research.

Read moreDetails
Popular sugar substitute erythritol may impair brain blood vessel health, study finds
Mental Health

Popular sugar substitute erythritol may impair brain blood vessel health, study finds

June 9, 2025

A new study suggests that erythritol, a popular sugar substitute, may harm the cells lining blood vessels in the brain. Lab tests revealed increased oxidative stress, reduced nitric oxide, and impaired clot-busting responses—factors linked to stroke risk.

Read moreDetails
Psychopathy stands out as key trait behind uncommitted sexual behavior
Developmental Psychology

New psychology research confirms the power of singing to infants

June 9, 2025

Researchers found that when caregivers sing more often to their infants, babies become noticeably happier over time. The randomized trial used real-time mood tracking and showed that even a brief music enrichment intervention can shape emotional development in infancy.

Read moreDetails
Brain imaging study finds large sex-differences in regions tied to mental health
Neuroimaging

Socioeconomic background tied to distinct brain and behavioral patterns

June 8, 2025

Researchers examining socioeconomic status and brain health found that family, neighborhood, and regional conditions are differently associated with memory, emotion, and brain connectivity, depending on when in life they occur and what kind of disadvantage is measured.

Read moreDetails
Brain imaging study links reduced synaptic density to social challenges in autism
Body Image and Body Dysmorphia

Study links anorexia nervosa to elevated opioid receptor levels in brain’s reward centers

June 7, 2025

Researchers have identified increased availability of opioid receptors in the brains of women with anorexia nervosa. The findings suggest that the brain's reward system may function differently in those with the disorder, contributing to restrictive eating patterns.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Low-carb diets linked to reduced depression symptoms — but there’s a catch

Neuroscientists discover biological mechanism that helps the brain ignore irrelevant information

Problematic porn use remains stable over time and is strongly linked to mental distress, study finds

Christian nationalists tend to imagine God as benevolent, angry over sins, and engaged

Psilocybin induces large-scale brain network reorganization, offering insights into the psychedelic state

Scientists map how alcohol changes bodily sensations

Poor sleep may shrink brain regions vulnerable to Alzheimer’s disease, study suggests

Narcissists perceive inequity because they overestimate their contributions, study suggests

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy