Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Neuroimaging

A neuroscientist explains how cancer hijacks the brain’s motivation circuit

by Adam Kepecs
May 6, 2025
in Neuroimaging
[Adobe Stock]

[Adobe Stock]

Share on TwitterShare on Facebook
Follow PsyPost on Google News

A cruel consequence of advanced cancer is the profound apathy many patients experience as they lose interest in once-cherished activities. This symptom is part of a syndrome called cachexia, which affects about 80% of late-stage cancer patients, leading to severe muscle wasting and weight loss that leave patients bone thin despite adequate nutrition.

This loss of motivation doesn’t just deepen patients’ suffering, it isolates them from family and friends. Because patients struggle to engage with demanding therapies that require effort and persistence, it also strains families and complicates treatment.

Doctors typically assume that when late-stage cancer patients withdraw from life, it is an inevitable psychological response to physical deterioration. But what if apathy isn’t just a byproduct of physical decline but an integral part of the disease itself?

In our newly published research, my colleagues and I have discovered something remarkable: Cancer doesn’t simply waste the body – it hijacks a specific brain circuit that controls motivation. Our findings, published in the journal Science, challenge decades of assumptions and suggest it might be possible to restore what many cancer patients describe as most devastating to lose – their will to engage with life.

Untangling fatigue from physical decline

To unravel the puzzle of apathy in cancer cachexia, we needed to trace the exact path inflammation takes in the body and peer inside a living brain while the disease is progressing – something impossible in people. However, neuroscientists have advanced technologies that make this possible in mice.

Modern neuroscience equips us with a powerful arsenal of tools to probe how disease changes brain activity in mice. Scientists can map entire brains at the cellular level, track neural activity during behavior, and precisely switch neurons on or off. We used these neuroscience tools in a mouse model of cancer cachexia to study the effects of the disease on the brain and motivation.

We identified a small brain region called the area postrema that acts as the brain’s inflammation detector. As a tumor grows, it releases cytokines − molecules that trigger inflammation − into the bloodstream. The area postrema lacks the typical blood-brain barrier that keeps out toxins, pathogens and other molecules from the body, allowing it to directly sample circulating inflammatory signals.

When the area postrema detects a rise in inflammatory molecules, it triggers a neural cascade across multiple brain regions, ultimately suppressing dopamine release in the brain’s motivation center − the nucleus accumbens. While commonly misconstrued as a “pleasure chemical,” dopamine is actually associated with drive, or the willingness to put in effort to gain rewards: It tips the internal cost-benefit scale toward action.

We directly observed this shift using two quantitative tests designed with behavioral economics principles to measure effort. In the first, mice repeatedly poked their noses into a food port, with progressively more pokes required to earn each food pellet. In the second task, mice repeatedly crossed a bridge between two water ports, each gradually depleting with use and forcing the mice to switch sides to replenish the supply, similar to picking berries until a bush is empty.

As cancer progressed, mice still pursued easy rewards but quickly abandoned tasks requiring greater effort. Meanwhile, we watched dopamine levels fall in real time, precisely mirroring the mice’s decreasing willingness to work for rewards.

Our findings suggest that cancer isn’t just generally “wearing out” the brain − it sends targeted inflammatory signals that the brain detects. The brain then responds by rapidly reducing dopamine levels to dial down motivation. This matches what patients describe: “Everything feels too hard.”

Restoring motivation in late-stage disease

Perhaps most exciting, we found several ways to restore motivation in mice suffering from cancer cachexia − even when the cancer itself continued progressing.

First, by genetically switching off the inflammation-sensing neurons in the area postrema, or by directly stimulating neurons to release dopamine, we were able to restore normal motivation in mice.

Second, we found that giving mice a drug that blocks a particular cytokine − working similarly to existing FDA-approved arthritis treatments − also proved effective. While the drug did not reverse physical wasting, it restored the mice’s willingness to work for rewards.

While these results are based on mouse models, they suggest a treatment possibility for people: Targeting this specific inflammation-dopamine circuit could improve quality of life for cancer patients, even when the disease remains incurable.

The boundary between physical and psychological symptoms is an artificially drawn line. Cancer ignores this division, using inflammation to commandeer the very circuits that drive a patient’s will to act. But our findings suggest these messages can be intercepted and the circuits restored.

Rethinking apathy in disease

Our discovery has implications far beyond cancer. The inflammatory molecule driving loss of motivation in cancer is also involved in numerous other conditions − from autoimmune disorders such as rheumatoid arthritis to chronic infections and depression. This same brain circuit might explain the debilitating apathy that millions of people suffering from various chronic diseases experience.

Apathy triggered by inflammation may have originally evolved as a protective mechanism. When early humans faced acute infections, dialing down motivation made sense − it conserved energy and directed resources toward recovery. But what once helped people survive short-term illnesses turns harmful when inflammation persists chronically, as it does in cancer and other diseases. Rather than aiding survival, prolonged apathy deepens suffering, worsening health outcomes and quality of life.

While translating these findings into therapies for people requires more research, our discovery reveals a promising target for treatment. By intercepting inflammatory signals or modulating brain circuits, researchers may be able to restore a patient’s drive. For patients and families watching motivation slip away, that possibility offers something powerful: hope that even as disease progresses, the essence of who we are might be reclaimed.The Conversation

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

TweetSendScanShareSendPin2ShareShareShareShareShare

RELATED

Chronic stress can alter genetic material in sperm, leading to changes in offspring behavior
Mental Health

A common parasite not only invades the brain — it can also decapitate human sperm

June 22, 2025

A new study finds that a widespread parasite, Toxoplasma gondii, can physically damage human sperm, including decapitating them on contact. The findings raise fresh questions about the parasite’s potential role in the decades-long global decline in male fertility.

Read moreDetails
Loss of empathy in frontotemporal dementia traced to weakened brain signals
Depression

New neuroscience research reveals brain antioxidant deficit in depression

June 22, 2025

A new meta-analysis suggests that people with major depressive disorder have lower levels of the brain antioxidant glutathione in the occipital cortex. The findings highlight a possible role for oxidative stress in depression and point to potential treatment targets.

Read moreDetails
Scientists uncover kidney-to-brain route for Parkinson’s-related protein spread
Neuroimaging

Scientists uncover kidney-to-brain route for Parkinson’s-related protein spread

June 22, 2025

A groundbreaking study suggests that Parkinson’s disease may begin in the kidneys, where a toxic protein builds up and travels to the brain. This discovery could reshape our understanding of the disease’s origins and risk factors.

Read moreDetails
Cannabis intoxication alters metabolism, but frequent users show fewer effects
Cannabis

Regular cannabis use linked to changes in brain activity regulating movement

June 20, 2025

Researchers have discovered that frequent cannabis users show reduced spontaneous brain activity in the motor cortex, and this neural suppression is tied to cannabis use severity and response speed, even though overall task performance remained comparable to non-users.

Read moreDetails
Some dark personality traits may help buffer against depression, new psychology research suggests
Hypersexuality

Frequent pornography use linked to altered brain connectivity and impaired cognitive performance

June 17, 2025

Researchers have found that individuals who frequently view internet pornography show distinct brain activity and diminished cognitive control. The study suggests that heavy use may impact emotional processing and executive function in ways that resemble patterns seen in substance addiction.

Read moreDetails
New study connects Mediterranean diet to positive brain chemistry
Early Life Adversity and Childhood Maltreatment

Childhood trauma linked to changes in brain structure and connectivity, study finds

June 17, 2025

Adults with a history of childhood trauma show measurable differences in brain structure and function, according to new research. The study found smaller surface area and volume in specific cortical regions, along with altered patterns of functional connectivity.

Read moreDetails
Scientists uncover biological pathway that could revolutionize anxiety treatment
Cognitive Science

Different parts of the same neuron learn in different ways, study finds

June 16, 2025

Researchers have discovered that apical and basal dendrites of the same neuron use different strategies to learn, suggesting neurons adapt more flexibly than previously thought. The findings help explain how the brain fine-tunes its wiring during learning.

Read moreDetails
Poor sleep may shrink brain regions vulnerable to Alzheimer’s disease, study suggests
Memory

Neuroscientists discover biological mechanism that helps the brain ignore irrelevant information

June 14, 2025

New research suggests the brain uses a learning rule at inhibitory synapses to block out distractions during memory replay. This process enables the hippocampus to prioritize useful patterns over random noise, helping build more generalizable and reliable memories.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Exposure to heavy metals is associated with higher likelihood of ADHD diagnosis

Eye-tracking study shows people fixate longer on female aggressors than male ones

Romantic breakups follow a two-stage decline that begins years before the split, study finds

Believing “news will find me” is linked to sharing fake news, study finds

A common parasite not only invades the brain — it can also decapitate human sperm

Almost all unmarried pregant women say that the fetus resembles the father, study finds

New neuroscience research reveals brain antioxidant deficit in depression

Scientists uncover kidney-to-brain route for Parkinson’s-related protein spread

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy