Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Big data study suggests the human brain navigates by taking the “pointiest path” rather than the shortest path

by Carlo Ratti, The Conversation
November 20, 2021
in Cognitive Science
(Photo credit: Richard Watts/NIH Image Gallery)

(Photo credit: Richard Watts/NIH Image Gallery)

Share on TwitterShare on Facebook

Think of your morning walk to work, school or your favorite coffee shop. Are you taking the shortest possible route to your destination? According to big data research that my colleagues and I conducted, the answer is no: People’s brains are not wired for optimal navigation.

Instead of calculating the shortest path, people try to point straight toward their destinations – we call it the “pointiest path” – even if it is not the most efficient way to walk.

As a researcher who studies urban environments and human behavior, I have always been interested in how people experience cities, and how studying this can tell researchers something about human nature and how we’ve evolved.

Chasing down a hunch

Long before I could run an experiment, I had a hunch. Twenty years ago, I was a student at the University of Cambridge, and I realized that the path I followed between my bedroom at Darwin College and my department on Chaucer Road was, in fact, two different paths. On the way to Chaucer, I would take one set of turns. On the way back home, another.

Surely one route was more efficient than the other, but I had drifted into adapting two, one for each direction. I was consistently inconsistent, a small but frustrating realization for a student devoting his life to rational thinking. Was it just me or were my fellow classmates – and my fellow humans – doing the same?

Around 10 years ago, I found tools that could help answer my question. At the Senseable City Lab at the Massachusetts Institute of Technology, we were pioneering the science of understanding cities by analyzing big data, and in particular digital traces from cellphones. Studying human mobility, we noticed that, on the whole, people’s routes were not conservative, meaning they did not preserve the same path from A to B as the opposite direction, from B to A.

However, the technology and analytical methods of that time prevented us from learning more – in 2011, we could not reliably tell a pedestrian apart from a car. We were close, but still a few technological steps short of tackling the enigma of human navigation in cities.

Big cities, big data

Today, thanks to access to data sets of unparalleled size and accuracy, we can go further. Every day, everyone’s smartphones and apps collect thousands of data points. Collaborating with colleagues at the MIT Department of Brain and Cognitive Sciences and other international scholars, we analyzed a massive database of anonymized pedestrian movement patterns in San Francisco and Boston. Our results consider questions that my young self at Cambridge didn’t know to ask.

Two city maps stacked vertically with paths along city streets marked in varying levels of intensity
The paths people take are recorded by their cellphones. Anonymous data from thousands of phones shows the paths people take in Boston (above) and San Francisco (below). (Carlo Ratti, CC BY-ND)

After we analyzed pedestrian movement, it became clear that I am not the only one who navigates this way: Human beings are not optimal navigators. After accounting for possible interference from people letting Google Maps choose their path for them, our analysis of our big data sets fueled several interconnected discoveries.

First, human beings consistently deviate from the shortest possible path, and our deviations increase over longer distances. This finding probably seems intuitive. Previous research has already shown how people rely on landmarks and miscalculate the lengths of streets.

Our study was able to go a step further: developing a model with the capability to accurately predict the slightly irrational paths that we found in our data. We discovered that the most predictive model – representing the most common mode of city navigation – was not the quickest path, but instead one that tried to minimize the angle between the direction a person is moving and the line from the person to their destination.

This finding appears to be consistent across different cities. We found evidence of walkers attempting to minimize this angle in both the famously convoluted streets of Boston and the orderly grid of San Francisco. Scientists have recorded similar behaviors in animals, which are described in the research literature as vector-based navigation. Perhaps the entire animal kingdom shares the idiosyncratic tendencies that confused me on my walk to work.

Evolution: From savannas to smartphones

Why might everyone travel this way? It’s possible that the desire to point in the right direction is a legacy of evolution. In the savanna, calculating the shortest route and pointing straight at the target would have led to very similar outcomes. It is only today that the strictures of urban life – traffic, crowds and looping streets – have made it more obvious that people’s shorthand is not quite optimal.

Still, vector-based navigation may have its charms. Evolution is a story of trade-offs, not optimizations, and the cognitive load of calculating a perfect path rather than relying on the simpler pointing method might not be worth a few saved minutes. After all, early humans had to preserve brain power for dodging stampeding elephants, just like people today might need to focus on avoiding aggressive SUVs. This imperfect system has been good enough for untold generations.

However, people are no longer walking, or even thinking, alone. They are increasingly wedded to digital technologies, to the point that phones represent extensions of their bodies. Some have argued that humans are becoming cyborgs.

This experiment reminds us of the catch: Technological prostheses do not think like their creators. Computers are perfectly rational. They do exactly what code tells them to do. Brains, on the other hand, achieve a “bounded rationality” of “good enoughs” and necessary compromises. As these two distinct entities become increasingly entangled and collide – on Google Maps, Facebook or a self-driving car – it’s important to remember how they are different from each other.

Looking back on my university days, it is a sobering thought that humanity’s biological source code remains much more similar to that of a rat in the street than that of the computers in our pockets. The more people become wedded to technology, the more important it becomes to make technologies that accommodate human irrationalities and idiosyncrasies.

[The Conversation’s science, health and technology editors pick their favorite stories. Weekly on Wednesdays.]The Conversation

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

RELATED

Scientists discover a pet’s fascinating “afterglow effect” on romantic couples
Cognitive Science

How you bet after a win may depend on your personality and intelligence

November 20, 2025
New psychology research sheds light on the mystery of deja vu
Cognitive Science

New psychology research sheds light on the mystery of deja vu

November 20, 2025
The disturbing impact of exposure to 8 minutes of TikTok videos revealed in new study
Cognitive Science

Active short video use linked to altered attention and brain connectivity

November 18, 2025
New study connects Mediterranean diet to positive brain chemistry
Cognitive Science

Scientists reveal intriguing new insights into how the brain processes and predicts sounds

November 18, 2025
New research sheds light on parenthood’s impact on abortion views
Cognitive Science

Specific parental traits are linked to distinct cognitive skills in gifted children

November 16, 2025
Liberals prefer brands that give employees more freedom, study finds
Cognitive Science

Two simple cognitive tendencies emerge as surprisingly powerful predictors of belief in pseudoscience

November 15, 2025
People who signal victimhood are seen as having more manipulative traits
Cognitive Science

Music reorganizes brain activity to enhance our sense of time

November 14, 2025
From tango to StarCraft: Creative activities linked to slower brain aging, according to new neuroscience research
Cognitive Science

Scientists identify a crucial brain feature connecting genetics to intelligence

November 13, 2025

PsyPost Merch

STAY CONNECTED

LATEST

How generative AI could change how we think and speak

Increased neural flexibility may signal brain network breakdown in Alzheimer’s

Support for Black Lives Matter may buffer against the psychological toll of traumatic viral videos

Study examines how self-perceived desirability gaps influence romantic dynamics

Study finds nearly two-thirds of AI-generated citations are fabricated or contain errors

Gaps in youth sex education linked to relationship struggles in adulthood

How you bet after a win may depend on your personality and intelligence

New psychology research sheds light on the mystery of deja vu

RSS Psychology of Selling

  • What 5,000 tweets reveal about the reality of Black Friday deals
  • A bad mood might not hurt your work productivity as much as you think
  • The surprising power of purchase preconditions in retail
  • What separates K-pop and C-pop in the American Gen Z market? A new analysis offers clues
  • What the neuroscience of Rock-Paper-Scissors reveals about winning and losing
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy