Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health

Eating disorder gene alters feeding and behavior in female mice

by University of Iowa
October 13, 2016
in Mental Health
Photo credit: Wellcome Images

Photo credit: Wellcome Images

Share on TwitterShare on Facebook

Giving mice a gene mutation linked to eating disorders in people causes feeding and behavior abnormalities similar to symptoms often seen in patients with eating disorders. Only female mice are affected by the gene mutation, and some of the abnormalities in the female mice depend on whether they are housed alone or together with other mice.

Eating disorders like anorexia nervosa and bulimia are serious, sometimes life-threatening illnesses that affect millions of people in the United States, and are more prevalent in women. Although it has long been known that genetics play a major role in the risk of developing eating disorders, very little is understood about which genes are mutated in patients with eating disorders and how those mutations affect the brain and behavior.

In 2013, researchers led by University of Iowa scientists Michael Lutter, MD, PhD, and Huxing Cui, PhD, identified two genes from two different families that are associated with an increased risk of developing an eating disorder. In the new study, published Oct. 13 in the journal Biological Psychiatry, the team has developed a mouse model to investigate the behavioral effects of one of those gene mutations.

The gene in question is called histone deacetylase 4 (HDAC4). It is a transcriptional repressor, which means it turns off other genes. To create the new mouse model of this gene mutation, the researchers used CRISPR-Cas9 gene editing to incorporate the human mutation in the mouse HDAC4 gene.

“The mutated female mice have several behaviors relevant to eating disorders,” explains Lutter, formerly at the University of Iowa and now a psychiatrist at the Eating Recovery Center of Dallas. “In particular, they work less hard to obtain high-calorie food when they are hungry, which is important because failure to increase food intake in response to hunger is a core feature of anorexia nervosa. Also, they have compulsive grooming, which is considered a model of obsessive-compulsive disorder in mice. OCD-like behaviors are very common in patients with anorexia nervosa as well.”

“These findings support a role for the HDAC4 mutation in causing eating disorders in humans and gives us an important tool (the mouse model) to study the neurobiological basis of eating disorders,” adds lead study author Cui, assistant professor of pharmacology at the UI Carver College of Medicine.

The study also revealed a surprising relationship between the feeding and behavior abnormalities and the animals’ living conditions. The genetically altered female mice were more anxious and irritable when they were in a group living situation than when they were individually housed and seemed to find social interaction less rewarding, Lutter says.

The genetically altered mice also allowed the researchers to investigate the biological pathways involved in the animals’ feeding and behavioral problems. Using bioinformatics analysis, the researchers identified genes that are controlled by HDAC4. They discovered that the HDAC4 mutation leads to a decrease in the expression of genes involved in synthesis of the neurotransmitter glutamate.

“This is important because glutamate has previously been implicated in feeding, obsessive-compulsive disorder (OCD), and depression,” Lutter says. “So this one observation could explain a whole array of behavioral deficits.”

“This is the first biological pathway that’s been identified as being associated with the risk of developing an eating disorder,” Cui notes. “This work will open new avenues of research to understand the neurobiological basis of eating disorders and identify new opportunities for development of medications to treat eating disorders.”

In addition to helping researchers tease out the biological pathways underlying eating disorders and identifying potential targets for new therapies, this mouse model could also be used to screen potential drugs to treat eating disorders.

One of the first questions the team will tackle is why the HDAC4 mutation affected only female mice. Eating disorders are 2 to 3 times more prevalent in women than men, and sex hormones play an important role in the development of eating disorders. The researchers will use the mice to investigate how sex hormones like estrogen affect brain function.

In addition to Cui and Lutter, the UI team involved researchers from the Departments of Psychiatry, Pharmacology, and Pediatrics: Michael Khan, Kenji Satio, Kevin Davis, Ian Kidder, Latisha McDaniel, Benjamin Darbro, and Andrew Pieper.

The research was supported in part by grants from the Brain and Behavior Foundation, The Klarman Family Foundation, the National Institute for Mental Health (MH109920), the American Heart Association, and the Fraternal Order of Eagles Diabetes Research Center at the UI.

RELATED

The impulse to garden in hard times has deep roots
Mental Health

The impulse to garden in hard times has deep roots

November 17, 2025
Scientists discover a pet’s fascinating “afterglow effect” on romantic couples
Mental Health

Street dancing may improve cognitive reserve in young women, study finds

November 17, 2025
Scientists discover a pet’s fascinating “afterglow effect” on romantic couples
Depression

New study links soft drink consumption to depression via the gut microbiome

November 17, 2025
How you view time may influence depression by shaping your sleep rhythm
Dementia

The rhythm of your speech may offer clues to your cognitive health

November 16, 2025
A simple writing exercise shows promise for reducing anxiety
Anxiety

A simple writing exercise shows promise for reducing anxiety

November 16, 2025
How you view time may influence depression by shaping your sleep rhythm
Depression

Study uncovers distinct genetic blueprints for early- and late-onset depression

November 16, 2025
How you view time may influence depression by shaping your sleep rhythm
Depression

How you view time may influence depression by shaping your sleep rhythm

November 16, 2025
Neuroscientists identify a shared brain circuit for creativity
ADHD

ADHD is linked to early and stable differences in brain’s limbic system

November 16, 2025

PsyPost Merch

STAY CONNECTED

LATEST

The impulse to garden in hard times has deep roots

A sparse population of neurons plays a key role in coordinating the brain’s blood supply

Street dancing may improve cognitive reserve in young women, study finds

Why people think kindness is in your DNA but selfishness isn’t

New study links soft drink consumption to depression via the gut microbiome

Childhood adversity associated with heightened risk of early death

Scientists discover a pet’s fascinating “afterglow effect” on romantic couples

Specific parental traits are linked to distinct cognitive skills in gifted children

RSS Psychology of Selling

  • What separates K-pop and C-pop in the American Gen Z market? A new analysis offers clues
  • What the neuroscience of Rock-Paper-Scissors reveals about winning and losing
  • Rethink your global strategy: Research reveals when to lead with the heart or the head
  • What five studies reveal about Black Friday misbehavior
  • How personal happiness shapes workplace flourishing among retail salespeople
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy