Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

How cells in the developing ear ‘practice’ hearing

by Johns Hopkins Medicine
November 26, 2015
in Cognitive Science
Photo credit: Han Chin Wang, Dwight E. Bergles

Photo credit: Han Chin Wang, Dwight E. Bergles

Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence of sound. “The multistep process we uncovered reminds me of a Rube Goldberg invention,” says Dwight Bergles, Ph.D., professor of neuroscience at the Johns Hopkins University School of Medicine, a reference to Goldberg’s construction of complicated gadgets to perform seemingly simple tasks. “Cells in the inner ear exploit a system used for fluid secretion in other organs to simulate the effect of sound before hearing begins, preparing them for the real deal.”

Normal hearing in most mammals, Bergles says, is a multistep process that begins with sound waves hitting the ear drum, which transfers energy to the air-filled middle ear and its three tiny bones. Then the fluid in the inner ear vibrates at a corresponding electrical frequency, which bends the “antennas” of just the right “hair cells,” causing them to release chemical messengers that tell nearby nerves to fire. That signal then travels to the brain, where it is interpreted as a particular sound.

Scientists, Bergles says, already knew that hair cells and nearby “supporting” cells in the developing inner ear show synchronous bursts of activity that are triggered by release of the “energy” chemical ATP, which is also used as a potent communication signal. This activity is then conveyed to the brain in the same way that sound-evoked information is, leading to burst firing of neurons in different auditory centers of the brain. What was unknown was how ATP activates hair cells.

To find out, Bergles and his team homed in on biochemical elements of the system and found that chloride ion channels in the supporting cells seemed crucial. They knew that ATP triggers a rise in calcium levels inside supporting cells, so they guessed that the calcium was the cue for a calcium-activated chloride channel to open.

An analysis of gene activity in the supporting cells pointed to involvement of the TMEM16A chloride channel, and they found high levels of this channel within supporting cells that surround inner hair cells. Experiments in mice revealed that when this channel was removed from supporting cells or blocked with drugs, the spontaneous excitation of the hair cells decreased.

Further biochemical tests, combined with electrical recordings and imaging of calcium changes in the inner ears of mice, allowed the team to piece together a full chain of events. First, supporting cells release ATP, leading to self-stimulation of their own ATP receptors, triggering an increase in calcium levels inside the cells. This rise in calcium opens the TMEM16A channels to let chloride out, which also drags potassium ions and water out. The potassium that is released during these events activates the hair cells, stimulating the nerve cells with which they have formed weak connections.

It’s this pairing, says Bergles, that is thought to stabilize connections that help the brain make sense of sounds. “This step happens during the first two weeks after birth in mice and rats, when the middle ear is still filled with fluid and outside sounds can’t reach the inner ear.”

He adds: “The hair cells are arranged in a line and respond to different frequencies based on their location, like keys on a piano. Their connection with nearby nerve cells is strengthened every time a hair cell is activated and causes its partner nerve cell to fire.” When the brain receives a signal from hair cells near the entrance of the inner ear, he says, it “hears” a high-pitched sound; when the signal comes from farther in, it “hears” a deeper sound.

“There’s a beauty to this seemingly overly complex process,” Bergles says. “It uses the capabilities of the cells in a novel way to trigger nerve cell activity. We think this helps establish and refine the connections between ear and brain so that the animals can properly hear sounds as soon as they are exposed to them.”

Because mice can’t tell researchers if they are hearing anything, researchers can only surmise that they do based on activity they record in the auditory centers of the brain. Bergles says their research suggests that these “sounds” might be perceived as single tones played in succession, something like tests of an emergency response system. He says that the self-made sounds are for the ear what a batting machine is for a baseball player. “The machines don’t have all the richness and unpredictability of a pitcher throwing a ball, but they nevertheless help players prepare for the big event.”

Although this self-stimulation process disappears after hearing begins, Bergles says that if this pathway were reactivated following injury, it could lead to tinnitus, or “ringing” in the ear. Further understanding of this early signaling, he says, may lead to new strategies for improving the integration and performance of cochlear implants and speeding recovery from sound-induced trauma.

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Even in healthy adults, high blood sugar levels are linked to impaired brain function
Memory

Neuroscientists decode how people juggle multiple items in working memory

July 8, 2025

New neuroscience research shows how the brain decides which memories deserve more attention. By tracking brain activity, scientists found that the frontal cortex helps direct limited memory resources, allowing people to remember high-priority information more precisely than less relevant details.

Read moreDetails
New study uncovers a surprising effect of cold-water immersion
Cognitive Science

New study uncovers a surprising effect of cold-water immersion

July 8, 2025

Cold-water immersion increases energy expenditure—but it may also drive people to eat more afterward. A study in Physiology & Behavior found participants consumed significantly more food following cold exposure, possibly due to internal cooling effects that continue after leaving the water.

Read moreDetails
Positive attitudes toward AI linked to problematic social media use
Cognitive Science

People with higher cognitive ability have weaker moral foundations, new study finds

July 7, 2025

A large study has found that individuals with greater cognitive ability are less likely to endorse moral values such as compassion, fairness, loyalty, and purity. The results point to a consistent negative relationship between intelligence and moral intuitions.

Read moreDetails
These common sounds can impair your learning, according to new psychology research
Cognitive Science

These common sounds can impair your learning, according to new psychology research

July 4, 2025

Your brain’s ancient defense system might be sabotaging your test scores. New research suggests our "behavioral immune system," which makes us subconsciously alert to signs of illness, can be triggered by coughs and sniffles.

Read moreDetails
From fireflies to brain cells: Unraveling the complex web of synchrony in networks
Addiction

Understanding “neuronal ensembles” could revolutionize addiction treatment

July 3, 2025

The same brain system that rewards you for a delicious meal is hijacked by drugs like fentanyl. A behavioral neuroscientist explains how understanding the specific memories behind these rewards is the key to treating addiction without harming our essential survival instincts.

Read moreDetails
Scientists just uncovered a surprising illusion in how we remember time
Memory

Scientists just uncovered a surprising illusion in how we remember time

July 3, 2025

Our perception of time is more fragile than we think. Scientists have uncovered a powerful illusion where repeated exposure to information makes us misremember it as happening much further in the past, significantly distorting our mental timelines.

Read moreDetails
Peppermint tea boosts memory and attention—but why?
Cognitive Science

Peppermint tea boosts memory and attention—but why?

July 2, 2025

Can a cup of peppermint tea sharpen your mind? A new study suggests it can—but not in the way scientists expected. Improved memory and attention followed the tea, but increased brain blood flow wasn't the reason why.

Read moreDetails
Scientists reveal ChatGPT’s left-wing bias — and how to “jailbreak” it
Artificial Intelligence

ChatGPT and “cognitive debt”: New study suggests AI might be hurting your brain’s ability to think

July 1, 2025

Researchers at MIT investigated how writing with ChatGPT affects brain activity and recall. Their findings indicate that reliance on AI may lead to reduced mental engagement, prompting concerns about cognitive “offloading” and its implications for education.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Scientists discover weak Dems have highest testosterone — but there’s an intriguing twist

Can sunshine make you happier? A massive study offers a surprising answer

New study links why people use pornography to day-to-day couple behavior

Virtual reality meditation eases caregiver anxiety during pediatric hospital stays, with stronger benefits for Spanish speakers

Fascinating new advances in psychedelic science reveal how they may heal the mind

Dysfunction within the sensory processing cortex of the brain is associated with insomnia, study finds

Prenatal exposure to “forever chemicals” linked to autistic traits in children, study finds

Ketamine repairs reward circuitry to reverse stress-induced anhedonia

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy