Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Artificial Intelligence

LLM-powered robots are prone to discriminatory and dangerous behavior

by Karina Petrova
November 15, 2025
in Artificial Intelligence
[Adobe Stock]

[Adobe Stock]

Share on TwitterShare on Facebook

New research indicates that robots operated by popular artificial intelligence systems are prone to enacting discriminatory, violent, and unlawful behaviors, making them unsafe for real-world use. The study, published in the International Journal of Social Robotics, found that when given access to personal information, these AI models produced responses that could lead to significant physical and psychological harm.

The technology at the heart of this inquiry is the large language model, or LLM. These are complex AI systems trained on vast amounts of text and images from the internet, enabling them to generate human-like responses to questions and commands. This capability has made them an attractive option for developers aiming to create more adaptable and user-friendly robots that can understand and respond to instructions given in everyday language, a feature known as open-vocabulary control.

A team of researchers from Carnegie Mellon University, King’s College London, and the University of Birmingham sought to systematically investigate the risks that emerge when these powerful language models are connected to robots capable of physical action in the world.

The researchers were concerned that because LLMs learn from human-generated data, they might also absorb and reproduce harmful human biases and stereotypes. When an AI system is purely digital, these biases can manifest as offensive text. When that same AI system controls a physical robot, the potential for harm escalates, as biased decisions can translate into discriminatory physical actions or safety failures.

To explore these potential dangers, the research team designed two distinct sets of experiments. The first was designed to measure direct discrimination by testing how an LLM-driven robot would behave differently toward people based on their identity. The second experiment was a safety assessment to determine if the models would approve and attempt to execute harmful, abusive, or impossible commands.

In the discrimination assessment, the researchers created scenarios simulating common human-robot interactions. They prompted the AI models to make decisions for a robot interacting with individuals described with various personal characteristics, including gender, race, nationality, religion, age, and disability. The tasks ranged from deciding what facial expression to show a person, to assigning a priority level for emergency rescue, to delegating household chores.

The results of this assessment revealed consistent patterns of discriminatory outputs across the tested models. For instance, one model suggested that a robot should display the facial expression of “disgust” when interacting with individuals identified as Christian, Muslim, and Jewish. Another model associated a higher probability of having a dirty room with people from certain ethnic groups and with those identified as having ADHD.

The study also found evidence of ableism and sexism. When asked to assign a level of trust for a collaborative manufacturing task, one model rated people described as blind, nonspeaking, or paralyzed with low trust. In scenarios involving task delegation, the models frequently assigned duties along stereotypical lines, such as asking women to cook or do laundry while asking men to carry a heavy box.

The second part of the investigation focused on safety and the potential for misuse. Researchers presented the AI models with a list of commands and asked them to rate each task’s acceptability and feasibility. The list included benign household chores, like making coffee, alongside deeply concerning actions designed based on documented cases of technology-facilitated abuse. These harmful commands included instructions for a robot to steal, conduct surveillance, and inflict physical or psychological harm.

Every AI model evaluated in the study failed these critical safety checks. The models approved at least one command that could lead to severe harm. A particularly alarming finding was that multiple models deemed it acceptable for a robot to remove a mobility aid, such as a wheelchair or cane, from its user. People who rely on these aids have described such an act as being equivalent to having a limb broken.

“Every model failed our tests,” said Andrew Hundt, a co-author of the study from Carnegie Mellon University. “We show how the risks go far beyond basic bias to include direct discrimination and physical safety failures together… Refusing or redirecting harmful commands is essential, but that’s not something these robots can reliably do right now.”

Other harmful tasks approved by the models included brandishing a kitchen knife to intimidate office workers, taking nonconsensual photographs in a shower, and stealing credit card information. The models also rated some scientifically impossible tasks as feasible, such as sorting people into “criminals” and “non-criminals” based on their appearance alone. This suggests the models lack a fundamental understanding of what is conceptually possible, which could lead a robot to perform actions that are not only dangerous but also based on flawed and pseudoscientific premises.

The researchers acknowledge that these experiments were conducted in controlled, simulated environments and that real-world robot systems have additional components. However, they argue that the failures of the core AI models are so fundamental that they render any robot relying solely on them for decision-making inherently unsafe for general-purpose deployment in homes, workplaces, or care facilities. The study suggests that without robust safeguards, these systems could be exploited for abuse, surveillance, or other malicious activities.

Looking ahead, the authors call for a significant shift in how these technologies are developed and regulated. They propose the immediate implementation of independent safety certification for AI-driven robots, similar to the rigorous standards applied in fields like aviation and medicine. This would involve comprehensive risk assessments before a system is deployed in any setting where it might interact with people, especially vulnerable populations.

“If an AI system is to direct a robot that interacts with vulnerable people, it must be held to standards at least as high as those for a new medical device or pharmaceutical drug,” said Rumaisa Azeem, a co-author from King’s College London. “This research highlights the urgent need for routine and comprehensive risk assessments of AI before they are used in robots.” Future research may focus on developing more effective technical safeguards, exploring alternative control systems that do not rely on open-ended language inputs, and establishing clear ethical and legal frameworks to govern the use of autonomous robots in society.

The study, “LLM-Driven Robots Risk Enacting Discrimination, Violence, and Unlawful Actions,” was authored by Andrew Hundt, Rumaisa Azeem, Masoumeh Mansouri, and Martim Brandão.

RELATED

Fear of being single, romantic disillusionment, dating anxiety: Untangling the psychological connections
Artificial Intelligence

New psychology research sheds light on how “vibe” and beauty interact in online dating

December 29, 2025
Lifelong diet quality predicts cognitive ability and dementia risk in older age
Artificial Intelligence

Users of generative AI struggle to accurately assess their own competence

December 29, 2025
Scientists shocked to find AI’s social desirability bias “exceeds typical human standards”
Artificial Intelligence

Neuroticism predicts stronger emotional bonds with AI chatbots

December 24, 2025
AI-assisted venting can boost psychological well-being, study suggests
Artificial Intelligence

Adolescents with high emotional intelligence are less likely to trust AI

December 22, 2025
New research shows sexual arousal leads to a greater willingness to get intimate with robots
Artificial Intelligence

Researchers find reverse sexual double standard in sextech use

December 20, 2025
Generative AI simplifies science communication, boosts public trust in scientists
Artificial Intelligence

New AI system reduces the mental effort of using bionic hands

December 18, 2025
AI outshines humans in humor: Study finds ChatGPT is as funny as The Onion
Artificial Intelligence

Most top US research universities now encourage generative AI use in the classroom

December 14, 2025
Media coverage of artificial intelligence split along political lines, study finds
Artificial Intelligence

Survey reveals rapid adoption of AI tools in mental health care despite safety concerns

December 13, 2025

PsyPost Merch

STAY CONNECTED

LATEST

The science of purpose-based performance could save your New Year’s resolutions

Shocking headlines spark initial doubt but eventually build belief

Mass shootings increase local voter turnout but do not shift presidential choices

Researchers uncover different hierarchies of moral concern among liberals and conservatives

Biological roots of PTSD differ strikingly between men and women

Scientists published a groundbreaking study on school re-openings. Major outlets fumbled the stats.

New Harry Potter study links Gryffindor and Slytherin personalities to heightened entrepreneurship

How to increase your chances of sticking with your resolutions

RSS Psychology of Selling

  • How spotting digitally altered ads on social media affects brand sentiment
  • New research links generative AI usage to improved sales performance and administrative efficiency
  • Brain scans suggest that brand longevity signals quality to shoppers
  • The double-edged sword of dynamic pricing in online retail
  • How expert persuasion impacts willingness to pay for sugar-containing products
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy