Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Aviation Psychology and Human Factors

Neuroscience studies suggest that pilots display a unique pattern of brain functional connectivity

by Eric W. Dolan
November 14, 2020
in Aviation Psychology and Human Factors, Cognitive Science
Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

Pilots display a different pattern of functional connectivity in the brain, according to new research conducted in China. The new studies examined interactions and synchronized activity between different areas of the brain, and the findings suggest that pilots tend to have enhanced cognitive flexibility compared to their non-flying counterparts.

“Civil aviation is a distinctive career. Pilots work in a complex, dynamic information environment. They must be aware of all the relevant information regarding this environment and recognize their meaning and importance,” said the authors of the new research in an article published in PLOS One.

Because of the cognitive demands placed on pilots, the researchers hypothesized that they would display a different pattern of brain connectivity compared to non-pilots.

The researchers used resting-state functional magnetic resonance imaging, a widely used tool for investigating spontaneous brain activity, to examine important neurocognitive networks in 26 pilots and 24 non-flying individuals who had a similar level of education.

Fourteen of the pilots were flight instructors from the Civil Aviation Flight University of China, while 12 pilots were first officers at airlines.

Compared to the control group, the pilots exhibited decreased functional connectivity within the central executive network and enhanced functional connections between the central executive network, salience network, and default mode network.

The decreased connectivity within the central executive network, which is associated with self-control and appraisal of threatening stimuli, “might enable the network to have more diverse functions,” the researchers said. On the other hand, the increased connectivity between the central executive network, salience network, and default mode network might be related to general cognitive performance.

In a similar study, published in Frontiers in Neuroscience, the researchers found that pilots also exhibited increased resting-state functional connectivity within the default mode network. The network has been referred to as the brain’s “autopilot” because of its link to mind-wandering and self-referential thought. It also appears to play an important role in switching between cognitive tasks.

“Pilots are always working in complex, dynamic environments. Flying is now not so much a ‘physical job,’ but a high-level cognitive activity. The pilot should be completely aware of all conditions in real time, and be ready to deal with various potential emergencies,” the researchers explains.

“These processes include continuous cognitive transitions, which are exactly the function of the DMN. Daily flying practice may activate the pilot’s DMN repeatedly and, ultimately, strengthen its activation level during the resting state.”

The study, “Increased functional dynamics in civil aviation pilots: Evidence from a neuroimaging study“, was authored by Xi Chen, Quanchuan Wang, Cheng Luo, Yong Yang, Hao Jiang, Xiangmei Guo, Xipeng Chen, Jiazhong Yang, and Kaijun Xu.

The study, “Altered Default Mode Network Dynamics in Civil Aviation Pilots“, was authored by Xi Chen, Kaijun Xu, Yong Yang, Quanchuan Wang, Hao Jiang, Xiangmei Guo, Xipeng Chen, Jiazhong Yang, and Cheng Luo.

(Image by Thomas Fengler from Pixabay)

RELATED

A new psychological framework helps explain why people choose to end romantic relationships
Cognitive Science

High-groove music boosts running speed and mood in women

November 8, 2025
Women can read age, adiposity and testosterone level from a man’s face
Cognitive Science

Neuroscientists discover a key brain signal that predicts reading fluency in children

November 7, 2025
Colorful digital illustration of a human brain with neon wireframe lines, representing neuroscience, psychology, and brain research. Ideal for psychology news, brain health, and cognitive sciences articles.
Cognitive Science

Higher fluid intelligence is associated with more structured cognitive maps

November 6, 2025
A woman’s choice of words for her genitals is tied to her sexual well-being, study finds
Cognitive Science

How walking fine-tunes your hearing

November 3, 2025
A simple illusion can unlock your childhood memories, according to new psychology research
Memory

A simple illusion can unlock your childhood memories, according to new psychology research

November 3, 2025
Cognitive issues in ADHD and learning difficulties appear to have different roots
ADHD

Cognitive issues in ADHD and learning difficulties appear to have different roots

November 2, 2025
In neuroscience breakthrough, scientists identify key component of how exercise triggers neurogenesis
Cognitive Science

In neuroscience breakthrough, scientists identify key component of how exercise triggers neurogenesis

November 1, 2025
Familial link between ADHD and crime risk is partly genetic, study suggests
Caffeine

Scientists question caffeine’s power to shield the brain from junk food

October 31, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Research suggests rich people tend to be more selfish – but why is that?

Brain cell ‘powerhouses’ may fuel dementia pathology

Younger adults show higher levels of Machiavellianism and psychopathy

A new psychological framework helps explain why people choose to end romantic relationships

Physical activity’s protective effect on depression is more evident in girls

A form of narcissism may be surprisingly adaptive in low-stress teens

Real-world social ties outweigh online networks in predicting of voting patterns

Alzheimer’s may damage nerve connections in fat tissue

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy