Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health

Traumatic brain injuries trigger neural network reorganization

by Eric W. Dolan
February 22, 2024
in Mental Health, Neuroimaging
(Photo credit: ZEISS Microscopy)

(Photo credit: ZEISS Microscopy)

Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

In a new study from Tufts University School of Medicine, scientists have unveiled new insights into the brain’s response to traumatic injuries, suggesting that the effects of a head injury extend far beyond the initial site of impact. Through advanced imaging techniques, the research team discovered that in the aftermath of a traumatic brain injury (TBI), the brain’s hemispheres collaborate to form new neural pathways, compensating for lost connections.

This research, recently published in the journal Cerebral Cortex, suggests that the impact of a TBI extends far beyond the immediate area of damage, affecting the entire brain and altering its function in unforeseen ways.

For decades, the focus of TBI research has predominantly been on the site of injury, with the broader effects on the brain often overlooked. Previous studies have laid the groundwork by demonstrating the immediate and long-term consequences of TBIs, including cognitive and motor dysfunction, increased risk of epilepsy, and even a predisposition to neurodegenerative diseases.

However, these studies primarily looked at the molecular and cellular aftermath of TBIs, leaving a gap in our understanding of how these injuries affect the overall network and function of the brain. This latest study by Samantha Bottom-Tanzer and her colleagues fills this crucial gap, offering new insights into the brain’s ability to rewire itself post-injury.

The researchers employed a novel imaging technique that integrates fluorescent sensors of neuronal activity with electrodes to investigate the brain’s response to TBI in a mouse model. This approach allowed them to observe and record the interactions between different regions of the brain following injury, capturing the formation of new neural pathways as the brain worked to compensate for lost connections.

The team conducted their observations over a three-week period, during which the mice were allowed to engage in activities such as running on an exercise wheel and resting, enabling the researchers to assess changes in neural activity across different states of motion and stillness. This methodology provided unprecedented insights into the dynamic and adaptive processes the brain undergoes after a traumatic injury, highlighting the extensive impact of TBI beyond the immediate site of damage.

The research team discovered that TBIs, typically resulting from severe impacts like car accidents or falls, provoke a widespread brain response that extends well beyond the immediate area of injury. Notably, the brain initiates a remarkable process of self-repair and adaptation, creating new neural pathways across both hemispheres in an effort to restore lost connections. This adaptive response indicates a level of plasticity and resilience in the brain that was previously underappreciated in TBI research.

This indicates that the brain’s response to injury involves a complex, whole-brain reorganization process, rather than being confined to the damaged area.

“Even areas far away from the injury behaved differently immediately afterward,” remarked first author Samantha Bottom-Tanzer, an MD/PhD student in neuroscience at the School of Medicine. “Traumatic brain injury research tends to focus on the region of injury, but this study makes a good case that the entire brain can be affected, and imaging in distal regions can provide valuable information.”

One of the most striking findings was the altered pattern of brain activity in injured mice, which differed markedly from the expected distinct patterns of movement and rest seen in healthy brains. Instead, injured brains exhibited a uniform pattern of activity regardless of whether the mice were moving or stationary.

This homogenization of brain activity patterns suggests a disruption in the brain’s ability to switch states based on the task at hand, an essential aspect of normal brain function. Despite this impairment, the mice retained the ability to perform tasks such as running on an exercise wheel, indicating that the brain can find new ways to accomplish tasks despite its altered state.

“Whether paying attention or walking, brains switch states depending on the task you’re doing,” explained senior author Chris Dulla, professor and interim chair of neuroscience at the School of Medicine. “After traumatic brain injury, this ability is not as robust, indicating such events are impairing how the brain switches states in a way that we don’t yet understand.”

“What we can see from the data is that the brain has new solutions for how to do all these complex tasks,” he added.

The clinical implications of these findings are substantial. With TBIs being a major cause of disability and death, understanding the brain’s capacity for adaptation and recovery opens new avenues for treatment. The study suggests that imaging techniques that capture the brain’s activity during various tasks could provide valuable insights into the specific impacts of an injury, enabling more personalized and effective therapeutic interventions. This approach could significantly improve outcomes for individuals suffering from TBIs by tailoring treatments to the unique ways in which their brains are compensating for injury.

“This study underscores the complexity of how injury affects a dynamic and always-changing brain,” said Bottom-Tanzer. “Most people think of the brain in one state, but our data indicates there are fluctuations, and it might offer opportunities to explore different interventions for physical therapy, speech therapy, and more.”

The team at Tufts University School of Medicine plans to extend their research to examine the long-term effects of brain injuries and explore how these findings could be translated into clinical practice. By further understanding the brain’s adaptability, scientists hope to develop more effective treatments that can mitigate the long-term consequences of traumatic brain injuries.

The study, “Traumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model,” was authored by Samantha Bottom-Tanzer, Sofia Corella, Jochen Meyer, Mary Sommer, Luis Bolaños, Timothy Murphy, Sadi Quiñones, Shane Heiney, Matthew Shtrahman, Michael Whalen, Rachel Oren, Michael J. Higley, Jessica A. Cardin, Farzad Noubary, Moritz Armbruster, and Chris Dulla.

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Exposure to heavy metals is associated with higher likelihood of ADHD diagnosis
ADHD

Exposure to heavy metals is associated with higher likelihood of ADHD diagnosis

June 23, 2025

Researchers in Spain have identified a potential link between certain heavy metals in urine and attention-deficit/hyperactivity disorder in children. High levels of copper and cadmium were associated with inattention, while copper and antimony related to hyperactivity-impulsivity.

Read moreDetails
Chronic stress can alter genetic material in sperm, leading to changes in offspring behavior
Mental Health

A common parasite not only invades the brain — it can also decapitate human sperm

June 22, 2025

A new study finds that a widespread parasite, Toxoplasma gondii, can physically damage human sperm, including decapitating them on contact. The findings raise fresh questions about the parasite’s potential role in the decades-long global decline in male fertility.

Read moreDetails
Loss of empathy in frontotemporal dementia traced to weakened brain signals
Depression

New neuroscience research reveals brain antioxidant deficit in depression

June 22, 2025

A new meta-analysis suggests that people with major depressive disorder have lower levels of the brain antioxidant glutathione in the occipital cortex. The findings highlight a possible role for oxidative stress in depression and point to potential treatment targets.

Read moreDetails
Scientists uncover kidney-to-brain route for Parkinson’s-related protein spread
Neuroimaging

Scientists uncover kidney-to-brain route for Parkinson’s-related protein spread

June 22, 2025

A groundbreaking study suggests that Parkinson’s disease may begin in the kidneys, where a toxic protein builds up and travels to the brain. This discovery could reshape our understanding of the disease’s origins and risk factors.

Read moreDetails
Gut-brain connection: Proinflammatory bacteria linked to hippocampal changes in depression
Depression

Scientists reveal a surprising link between depression and microbes in your mouth

June 21, 2025

Lower diversity in the oral microbiome was linked to higher depressive symptoms in a large U.S. sample, with especially strong associations among men and non-Hispanic Whites. Differences in microbial composition were also observed between depressed and non-depressed individuals.

Read moreDetails
Loneliness is associated with a 31% higher risk of developing dementia, finds largest study to date
Dementia

Dementia: Tactile decline may signal early cognitive impairment

June 21, 2025

Touch-related sensory decline could offer early clues to cognitive problems, according to a recent review. The findings point to tactile impairments as possible predictors of memory loss and dementia, offering new directions for early detection and prevention.

Read moreDetails
Self-compassion training and relaxation training are equally effective at reducing social anxiety symptoms, study finds
Anxiety

Anxiety and anger may explain how parenting styles shape life satisfaction

June 21, 2025

Parental bonding may influence happiness well into adulthood, according to a new study. Italian researchers found that overprotective parenting predicted greater anxiety, while caring parenting supported healthier anger control—both of which played roles in shaping overall life satisfaction.

Read moreDetails
Bacteria in water, 3d illustration
Mental Health

Gut bacteria may play a causal role in obsessive-compulsive disorder, study suggests

June 20, 2025

A new study suggests that certain gut bacteria may influence the risk of obsessive-compulsive disorder. Using Mendelian randomization, researchers identified specific microbial taxa that appear to protect against or increase OCD symptoms.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Exposure to heavy metals is associated with higher likelihood of ADHD diagnosis

Eye-tracking study shows people fixate longer on female aggressors than male ones

Romantic breakups follow a two-stage decline that begins years before the split, study finds

Believing “news will find me” is linked to sharing fake news, study finds

A common parasite not only invades the brain — it can also decapitate human sperm

Almost all unmarried pregant women say that the fetus resembles the father, study finds

New neuroscience research reveals brain antioxidant deficit in depression

Scientists uncover kidney-to-brain route for Parkinson’s-related protein spread

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy