Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Neuroscientists identify a brain circuit that encodes time and place

by Massachusetts Institute of Technology
September 27, 2015
in Cognitive Science
Photo credit: Ardy Rahman/UCI Research

Photo credit: Ardy Rahman/UCI Research

Share on TwitterShare on Facebook
Don't miss out! Follow PsyPost on Bluesky!

When you remember a particular experience, that memory has three critical elements — what, when, and where. MIT neuroscientists have now identified a brain circuit that processes the “when” and “where” components of memory.

This circuit, which connects the hippocampus and a region of the cortex known as entorhinal cortex, separates location and timing into two streams of information. The researchers also identified two populations of neurons in the entorhinal cortex that convey this information, dubbed “ocean cells” and “island cells.”

Previous models of memory had suggested that the hippocampus, a brain structure critical for memory formation, separates timing and context information. However, the new study shows that this information is split even before it reaches the hippocampus.

“It suggests that there is a dichotomy of function upstream of the hippocampus,” says Chen Sun, an MIT graduate student in brain and cognitive sciences and one of the lead authors of the paper, which appears in the Sept. 23 issue of Neuron. “There is one pathway that feeds temporal information into the hippocampus, and another that feeds contextual representations to the hippocampus.”

The paper’s other lead author is MIT postdoc Takashi Kitamura. The senior author is Susumu Tonegawa, the Picower Professor of Biology and Neuroscience and director of the RIKEN-MIT Center for Neural Circuit Genetics at MIT’s Picower Institute for Learning and Memory. Other authors are Picower Institute technical assistant Jared Martin, Stanford University graduate student Lacey Kitch, and Mark Schnitzer, an associate professor of biology and applied physics at Stanford.

When and where

Located just outside the hippocampus, the entorhinal cortex relays sensory information from other cortical areas to the hippocampus, where memories are formed. Tonegawa and colleagues identified island and ocean cells a few years ago, and have been working since then to discover their functions.

In 2014, Tonegawa’s lab reported that island cells, which form small clusters surrounded by ocean cells, are needed for the brain to form memories linking two events that occur in rapid succession. In the new Neuron study, the team found that ocean cells are required to create representations of a location where an event took place.

“Ocean cells are important for contextual representations,” Sun says. “When you’re in the library, when you’re crossing the street, when you’re on the subway, you have different memories associated with each of these contexts.”

To discover these functions, the researchers labeled the two cell populations with a fluorescent molecule that lights up when it binds to calcium — an indication that the neuron is firing. This allowed them to determine which cells were active during tasks requiring mice to discriminate between two different environments, or to link two events in time.

The researchers also used a technique called optogenetics, which allows them to control neuron activity using light, to investigate how the mice’s behavior changed when either island cells or ocean cells were silenced.

When they blocked ocean cell activity, the animals were no longer able to associate a certain environment with fear after receiving a foot shock there. Manipulating the island cells, meanwhile, allowed the researchers to lengthen or shorten the time gap between events that could be linked in the mice’s memory.

Information flow

Previously, Tonegawa’s lab found that the firing rates of island cells depend on how fast the animal is moving, leading the researchers to believe that island cells help the animal navigate their way through space. Ocean cells, meanwhile, help the animal to recognize where it is at a given time.

The researchers also found that these two streams of information flow from the entorhinal cortex to different parts of the hippocampus: Ocean cells send their contextual information to the CA3 and dentate gyrus regions, while island cells project to CA1 cells.

Tonegawa’s lab is now pursuing further studies of how the entorhinal cortex and other parts of the brain represent time and place. The researchers are also investigating how information on timing and location are further processed in the brain to create a complete memory of an event.

“To form an episodic memory, each component has to be recombined together,” Kitamura says. “This is the next question.”

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Brain boost from pecans? New study finds short-term cognitive benefits
Cognitive Science

Brain boost from pecans? New study finds short-term cognitive benefits

June 12, 2025

A new study published in Nutritional Neuroscience found that a pecan-enriched shake improved memory and attention in healthy young adults. Participants performed better on 8 of 23 cognitive tests after consuming pecans compared to a calorie-matched shake.

Read moreDetails
Democrats dislike Republicans more than Republicans dislike Democrats, studies find
Cognitive Science

New neuroscience study reveals sex-specific brain responses to threat

June 11, 2025

A new study shows that male and female mice engage distinct brain circuits when responding to threat, challenging the assumption that similar behavior reflects identical brain function. The findings highlight the need for sex-inclusive neuroscience research.

Read moreDetails
HIIT workouts outshine others in boosting memory and brain health, new study finds
Cognitive Science

Mega-study shows exercise boosts cognitive functioning across all ages and health conditions

June 11, 2025

From children to older adults, exercise enhances brainpower. A sweeping new analysis shows that physical activity improves general cognition, memory, and executive function in both healthy and clinical populations, reinforcing its value for mental sharpness at any age.

Read moreDetails
Democrats dislike Republicans more than Republicans dislike Democrats, studies find
Memory

Reduced memory specificity linked to earlier onset of psychiatric disorders in youth

June 11, 2025

New research suggests that difficulty recalling specific personal memories may be an early warning sign of mental illness in youth. A meta-analysis finds this memory trait predicts first-time psychiatric diagnoses, especially depression, during adolescence and early adulthood.

Read moreDetails
Psychopathy stands out as key trait behind uncommitted sexual behavior
Cognitive Science

Study identifies top-performing natural extracts for improving cognitive function

June 9, 2025

Researchers conducted a large-scale comparison of herbal supplements and found that certain natural extracts can improve memory, executive function, and cognitive flexibility in healthy adults—suggesting potential support for brain health through plant-based compounds.

Read moreDetails
Neuroimaging study suggests mindfulness meditation lowers sensory gating
Cognitive Science

Neuroimaging study suggests mindfulness meditation lowers sensory gating

June 7, 2025

A new study finds that mindfulness meditators are more likely to report feeling a touch — even when none occurs — and that this sensitivity is linked to altered brain rhythms.

Read moreDetails
Your brain’s insulation might become emergency energy during a marathon
Cognitive Science

Scientists map the hidden architecture of the brain’s default mode network

June 5, 2025

A new study reveals that the brain’s default mode network is made up of distinct anatomical types that support both internal thoughts and external processing. This structural diversity helps explain the network’s role in everything from memory to imagination.

Read moreDetails
Sleep deprivation reduces attention and cognitive processing capacity
Cognitive Science

Sleep deprivation reduces attention and cognitive processing capacity

May 31, 2025

A new study shows that 36 hours without sleep impairs table tennis players’ reaction times, attention, and brain connectivity. The findings reveal how acute sleep deprivation disrupts spatial cognitive processing, with potential consequences for athletic performance and decision-making under pressure.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

The dark psychology of how people get drawn into cults

A neuroscientist explains why it’s impossible for AI to “understand” language

Parental conflict may shape how mothers discipline their children

Moral self-concept in kindergarten predicts better social skills in early school years, study finds

Changes in sleep can signal hypomanic episodes days before they begin, study finds

Brain stimulation boosts therapy outcomes for OCD in clinical trial

Men more likely than women to orgasm from anal penetration, study finds

Brain boost from pecans? New study finds short-term cognitive benefits

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy