Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Researchers find neural switch that turns dreams on and off

by University of California at Berkeley
October 25, 2015
in Cognitive Science
Photo credit: David Goehring

Photo credit: David Goehring

Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

At the flip of a switch, University of California, Berkeley, neuroscientists can send a sleeping mouse into dreamland.

The researchers inserted an optogenetic switch into a group of nerve cells located in the ancient part of the brain called the medulla, allowing them to activate or inactivate the neurons with laser light.

When the neurons were activated, sleeping mice entered REM sleep within seconds. REM sleep, characterized by rapid eye movements, is the dream state in mammals accompanied by activation of the cortex and total paralysis of the skeletal muscles, presumably so that we don’t act out the dreams flashing through our mind.

Inactivating the neurons reduced or even eliminated a mouse’s ability to enter REM sleep.

“People used to think that this region of the medulla was only involved in the paralysis of skeletal muscles during REM sleep,” said lead author Yang Dan, a UC Berkeley professor of molecular and cell biology and a Howard Hughes Medical Institute Investigator. “What we showed is that these neurons triggered all aspects of REM sleep, including muscle paralysis and the typical cortical activation that makes the brain look more awake than in non-REM sleep.”

When a laser triggers an optogenetic switch in neurons in the medulla of a sleeping mouse, the animal goes from non-REM sleep (NREM) into REM or dream sleep. The axons of these neurons (green) reach into distant parts of the primitive brain, such as the hypothalamus, broadly affecting brain function.
When a laser triggers an optogenetic switch in neurons in the medulla of a sleeping mouse, the animal goes from non-REM sleep (NREM) into REM or dream sleep. The axons of these neurons (green) reach into distant parts of the primitive brain, such as the hypothalamus, broadly affecting brain function.

While other types of neurons in the brainstem and hypothalamus have been shown to influence REM sleep, Dan said, “Because of the strong induction of REM sleep – in 94 percent of the recorded trials our mice entered REM sleep within seconds of activating the neurons – we think this might be a critical node of a relatively small network that makes the decision whether you go into dream sleep or not.”

The UC Berkeley team reported their results in the Oct. 15 print issue of the British journal Nature, and the paper was posted online Oct. 7.

The discovery will not only help researchers better understand the complex control of sleep and dreaming in the brain, the researchers said, but will allow scientists to stop and start dreaming at will in mice to learn why we dream.

“Many psychiatric disorders, especially mood disorders, are correlated with changes in REM sleep, and some widely used drugs affect REM sleep, so it seems to be a sensitive indicator of mental and emotional health,” said first author Franz Weber, a UC Berkeley postdoctoral fellow. “We are hoping that studying the sleep circuit might lead us to new insights into these disorders as well as neurological diseases that affect sleep, like Parkinson’s and Alzheimer’s diseases.”

Eating and dreaming

The researchers also found that activating these brain cells while the mice were awake had no effect on wakefulness, but did make them eat more. In normal mice, these neurons – a subset of nerve cells that release the neurotransmitter gamma-amino butyric acid (GABA), and so are called GABAergic neurons – are most active during waking periods when the mice are eating or grooming, two highly pleasurable activities.

Dan suspects that these GABAergic neurons in the medulla have the opposite effect of stress neurons, such as the noradrenergic neurons in the pons, another ancient part of the brain. Noradrenergic neurons release the transmitter noradrenalin, a cousin of adrenalin.

“Other people have found that noradrenergic neurons, which are active when you are running, shut down when eating or grooming. So it seems like when you are relaxed and enjoying yourself, the noradrenergic neurons switch off and these GABAergic neurons in the medulla turn on,” she said.

The GABAergic neurons project from the ventral part of the medulla, which sits at the top of the spinal cord, into many regions of the brainstem and hypothalamus, and thus are able to affect many bodily functions. These regions – more primitive than the brain’s cortex, the center of thinking and reasoning – are the seat of emotions and many innate behaviors as well as the control centers for muscles and automatic functions such as breathing.

Optical brain state switching

Dan, Weber and their colleagues chose a powerful technique called optogenetics to study these REM-related GABAergic neurons in the medulla. The technique involves inserting a light-sensitive ion channel into specific types of neurons by means of a virus. To target the virus to GABAergic neurons, the researchers used a genetically engineered mouse line that expresses a marker protein in these specific neurons only. Once present, the ion channel can turn on the activity of neurons when stimulated by laser light through an optical fiber inserted in the brain. Alternatively, inserting an inhibitory ion pump into the GABAergic neurons allowed the researchers to turn off the activity of these neurons through laser stimulation.

Using this genetically engineered strain of mice, the researchers mapped the activity of these neurons in the medulla and then recorded how activating or inactivating the neurons for brief periods affected sleep and waking behavior.

They also used a drug to inactivate the same set of neurons and found a reduction of REM sleep, though not as immediate and lasting for a longer period of time, since the drug required about half an hour to take effect and wore off slowly.

They also inserted the light-sensitive ion channels into a different set of neurons in the medulla: glutamatergic neurons, which release the neurotransmitter glutamate. Activating these neurons immediately awakened the animals, the opposite effect of activating the GABAergic neurons.

Dan is continuing her studies of the neurons that affect not only REM sleep, but also non-REM sleep.

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Eye-tracking study suggests that negative comments on social media are more attention-grabbing than positive comments
Cognitive Science

Can you train your brain to unsee optical illusions? Scientists think so

May 12, 2025

A recent study found that radiologists are less susceptible to optical illusions, likely due to their intensive visual training. The research challenges long-standing beliefs that illusions are automatic and suggests perceptual skills can be shaped over time.

Read moreDetails
Diets high in fat and sugar appear to harm cognitive function
Cognitive Science

Diets high in fat and sugar appear to harm cognitive function

May 10, 2025

Consuming a Western-style diet packed with sugar and saturated fats may hurt your brain, not just your waistline. A new study shows poorer performance on spatial memory tasks among people with diets high in processed, unhealthy foods.

Read moreDetails
People with lower cognitive ability more likely to fall for pseudo-profound bullshit
Cognitive Science

People with lower cognitive ability more likely to fall for pseudo-profound bullshit

May 9, 2025

A new meta-analysis published in Applied Cognitive Psychology finds that people with lower cognitive ability are more likely to find meaning in pseudo-profound nonsense. The study identifies key psychological traits linked to susceptibility to feel-good but meaningless statements.

Read moreDetails
Neuroscientists uncover a fascinating fact about social thinking in the brain
Cognitive Science

Neuroscientists uncover a fascinating fact about social thinking in the brain

May 7, 2025

Our brains process social similarity in two ways—by comparing people to each other and by comparing them to ourselves. A new study using brain imaging reveals that these forms of person knowledge are represented in separate areas of the brain.

Read moreDetails
Classical music may promote calmer, more stable fetal heart rhythms, study suggests
Cognitive Science

Classical music may promote calmer, more stable fetal heart rhythms, study suggests

May 6, 2025

Listening to classical music may calm the fetal heartbeat, according to new research. The study found that heart rate patterns became more orderly after music exposure.

Read moreDetails
Women underestimate their spatial intelligence—even when they perform just as well as men
Cognitive Science

Women underestimate their spatial intelligence—even when they perform just as well as men

May 6, 2025

New research shows women underestimate their spatial intelligence, even when they perform just as well as men. This gender gap in self-perception—shaped by personality traits like narcissism and modesty—could help explain why fewer women pursue STEM careers.

Read moreDetails
Scientists create a new color never before seen by human eyes
Cognitive Science

Scientists create a new color never before seen by human eyes

May 5, 2025

A groundbreaking study reveals that humans can experience an entirely new color, thanks to a system that stimulates individual cone cells in the retina. Scientists call the color “olo”—a brilliant blue-green that doesn't occur naturally in human vision.

Read moreDetails
Eye-tracking study: Women’s attention to facial masculinity tied to mating interests and self-perceived attractiveness
Cognitive Science

Negative images hijack attention and linger in memory, new study shows

May 3, 2025

A new study using a specially designed attention task finds that disturbing background images reliably disrupt focus and slow response times. These emotionally negative distractions also heighten negative feelings and are remembered more vividly, suggesting they hijack both attention and memory.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Alcohol use has particularly negative impact on individuals with ADHD

Daily exercise improves adolescent mental health — but too much may backfire

Psychedelics linked to religious disaffiliation—but not spiritual change—in large-scale study

Can you train your brain to unsee optical illusions? Scientists think so

New research links antidepressant effects of escitalopram to endocannabinoid system changes

College students still follow familiar relationship paths despite dating app era, study finds

Women who misrepresent themselves on dating apps more likely to consider cosmetic surgery

A single dose of psilocybin might help reduce symptoms in treatment-resistant depression

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy