Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive COVID-19

Severe COVID-19 infection might cause changes in brain metabolism, study finds

by Vladimir Hedrih
August 7, 2024
in COVID-19, Neuroimaging
(Photo credit: Adobe Stock)

(Photo credit: Adobe Stock)

Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

A neuroimaging study in Serbia found that individuals who survived a more severe COVID-19 infection had lower levels of creatine and N-acetylaspartate levels in several regions of the brain. The ratio of choline and creatine levels was heightened in survivors of more severe COVID-19 infections. The research, published in the Journal of Clinical Medicine, sheds light on the potential long-term neurological impacts of severe COVID-19 infections, highlighting changes in brain metabolism that could contribute to cognitive and neurological symptoms observed in patients post-recovery.

COVID-19 is an infectious disease caused by the coronavirus SARS-CoV-2. This infection in humans emerged in late 2019 and quickly spread around the world, causing a global pandemic. While many individuals experienced a COVID-19 infection with few or almost no symptoms, the infection proved deadly for many others. Estimates indicate that it infected over 700 million people worldwide, killing around 7 million during the 2020-2022 pandemic.

Symptoms of COVID-19 range from mild to severe and life-threatening. They can include fever, cough, difficulty breathing, fatigue, and loss of taste or smell. Aftereffects, often referred to as “long COVID,” can include lingering fatigue, respiratory issues, cognitive impairments, and other health problems. Studies have indicated that the virus responsible for the infection invades many different organs, including the nervous system. In many cases, individuals recovering from COVID-19 developed various neurological and psychiatric symptoms.

Study author Jelena Ostojić and her colleagues wanted to investigate whether COVID-19 affects specific brain metabolism markers and whether the severity of the COVID-19 infection is associated with this effect. They focused on the subcortical white matter, anterior cingulate cortex, deep frontal white matter, and posterior cingulate cortex regions of the brain, applying magnetic resonance spectroscopy.

Magnetic resonance spectroscopy is a non-invasive diagnostic technique that uses magnetic fields and radio waves to measure the concentration of specific chemicals, or metabolites, within tissues, providing detailed information about their biochemical composition. The authors of this study focused on levels of brain metabolites N-acetylaspartate, choline, and creatine, and their relative concentrations.

N-acetylaspartate is a marker of neuronal health and function, with decreased levels indicating neuronal loss or dysfunction. Elevated choline can indicate increased cell membrane turnover or malignancy. Creatine levels are typically stable and serve as a reference for other metabolites.

Study participants were 81 individuals who recovered from COVID-19 6-12 months before the study. Forty-one of these participants were female, and their ages ranged between 40 and 60 years. These individuals reported various neurological or neurocognitive symptoms associated with acute COVID-19 infection, such as headaches, dizziness, disorders of smell or taste, forgetfulness, and issues with concentration and attention. These individuals underwent magnetic resonance imaging and spectroscopy.

The study authors divided participants into three groups depending on the severity of COVID-19 symptoms they experienced during the infection. The mild group consisted of outpatients with milder symptoms who experienced at least one COVID-19 symptom during the acute phase but did not need supplemental oxygen.

The moderate group included hospitalized patients with moderate to severe symptoms who required standard oxygen support during the acute phase. The severe group was made up of hospitalized patients with severe symptoms, necessitating more intensive oxygen support, such as high-flow nasal cannula (HFNC) therapy, non-invasive and invasive mechanical ventilation, or extracorporeal membrane oxygenation (ECMO).

Results showed that levels of N-acetylaspartate and creatinine were lower in all studied regions of the brain in individuals who went through a more severe COVID-19 infection compared to participants who only had a mild form of COVID-19. Ratios of choline to creatine concentrations were increased.

“Both in grey and white matter, the decrease in NAA [N-acetylaspartate] suggests the neuronal loss and/or dysfunction following direct neuronal injury caused by virus per se or indirect neuronal loss caused by the neuroinflammatory processes triggered by systemic inflammation. One of the most interesting findings is the instability of Cr [creatine], with detected decrease reflecting the severity of the clinical condition possibly indicating an increased risk of neurological complications such as dementia following severe COVID-19 infection,” the study authors concluded.

“Finally, we observed relatively stable or even decreasing Cho [choline] in the more severe clinical presentations potentially speaking in favor of neuroplasticity in observed voxels [areas of the brain]. The alterations in brain metabolites observed in our study may be attributed to a combination of direct viral effects, systemic inflammation, oxidative stress, mitochondrial dysfunction, and hypoxia.”

The study sheds light on the likely aftereffects of COVID-19 infections on neural health. However, it should be noted that the study authors did not have participants’ data from before COVID-19. Therefore, it remains unknown whether these brain metabolism alterations developed as a consequence of the infection or if these individuals had altered brain metabolism even before that.

The paper, “Decreased Cerebral Creatine and N-Acetyl Aspartate Concentrations after Severe COVID-19 Infection: A Magnetic Resonance Spectroscopy Study,” was authored by Jelena Ostojić, Dusko Kozić, Sergej Ostojić, Aleksandra DJ Ilić, Vladimir Galic,  Jovan Matijašević, Dušan Dragićević, Otto Barak, and Jasmina Boban.

TweetSendScanShareSendPin1ShareShareShareShareShare

RELATED

From fireflies to brain cells: Unraveling the complex web of synchrony in networks
Addiction

Understanding “neuronal ensembles” could revolutionize addiction treatment

July 3, 2025

The same brain system that rewards you for a delicious meal is hijacked by drugs like fentanyl. A behavioral neuroscientist explains how understanding the specific memories behind these rewards is the key to treating addiction without harming our essential survival instincts.

Read moreDetails
Psychedelic compound blurs boundary between self and others in the brain, study finds
Mental Health

New brain stimulation method shows promise for treating mood, anxiety, and trauma disorders

July 2, 2025

Focused ultrasound targeting the amygdala safely reduced emotional brain reactivity and improved symptoms of depression, anxiety, and trauma disorders, suggesting it may be a promising new treatment for conditions that don’t respond to existing therapies.

Read moreDetails
Psychedelic compound blurs boundary between self and others in the brain, study finds
Ayahuasca

Psychedelic compound blurs boundary between self and others in the brain, study finds

July 2, 2025

A recent study found that a DMT/harmine formulation blurs the brain’s distinction between self and other faces, disrupting self-referential processing while preserving recognition of familiar faces, suggesting a neural basis for psychedelic-induced ego dissolution.

Read moreDetails
Scientists uncover previously unknown target of alcohol in the brain: the TMEM132B-GABAA receptor complex
Dementia

Could creatine slow cognitive decline? Mouse study reveals promising effects on brain aging

July 1, 2025

A new study shows that creatine supplementation can restore memory, reduce brain damage, and boost energy metabolism in aging mice. The findings suggest creatine may offer a simple dietary approach to protect against age-related cognitive decline.

Read moreDetails
New psychology study sheds light on mysterious “feelings of presence” during isolation
COVID-19

Frequent dreams and nightmares surged worldwide during the COVID-19 pandemic

July 1, 2025

An international study of over 15,000 adults across 16 countries found that dream recall and nightmares became more common during the pandemic, with sleep duration, age, and gender all playing a role in how often people experienced them.

Read moreDetails
Researchers identify neural mechanism behind memory prioritization
MDMA

New study reveals how MDMA rewires serotonin and oxytocin systems in the brain

June 30, 2025

Researchers found that MDMA reduces anxiety and enhances social behavior in zebrafish by altering key neurochemical systems. The drug suppressed serotonin signaling, boosted oxytocin receptor expression, and modulated brain signaling proteins involved in emotional regulation.

Read moreDetails
Researchers identify neural mechanism behind memory prioritization
Memory

Researchers identify neural mechanism behind memory prioritization

June 30, 2025

A new brain imaging study shows that when people try to remember multiple things, their brains give more precise attention to the most important item. The frontal cortex helps allocate memory resources, boosting accuracy for high-priority information.

Read moreDetails
Muscle contractions release chemical signals that promote brain network development
Memory

Sleep helps stitch memories into cognitive maps, according to new neuroscience breakthrough

June 28, 2025

Scientists have discovered that forming a mental map of a new environment takes more than just recognizing individual places—it also requires sleep. The study highlights how weakly tuned neurons gradually become synchronized to encode space as a connected whole.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Hispanic adolescents experience later sleep timing and greater social jet lag than peers, study finds

Student loan debt doesn’t deter civic engagement — it may actually drive it, new research suggests

Understanding “neuronal ensembles” could revolutionize addiction treatment

Not bothered by celebrity infidelity? This psychological trait might be why

Genetic factors may influence how well exercise buffers against childhood trauma

Tips for parents in talking with your kids about your partner’s mental illness

Subjective cognitive struggles strongly linked to social recovery in depression

New research suggests the conservative mental health advantage is a myth

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy