Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Stanford scientists find genetic basis of brain networks seen in imaging studies

by Stanford University Medical Center
June 11, 2015
in Cognitive Science
Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

A new study by researchers at the Stanford University School of Medicine found that synchronized physiological interactions between remote brain regions have genetic underpinnings.

The research was performed at Stanford but was made possible by collaborations with the Seattle-based Allen Institute for Brain Science and the IMAGEN Consortium, a multicenter European project, said the study’s senior author, Michael Greicius, M.D., an associate professor of neurology and neurological sciences.

The study will be published June 11 in Science.

An emerging consensus among neuroscientists is that cognitive operations are performed not by individual brain regions working in isolation, but by networks consisting of several discrete brain regions — anatomically connected either directly via white-matter tracts or indirectly through intermediary nodes — that share ‘functional connectivity,’ meaning that activity in these regions is tightly coupled.

Any given functional network is normally most active during the performance of the task associated with that network, as in the case of autobiographical memory (‘What did I eat for dinner last night?’). But the synchronous activity of component regions persists when networks are idling. Well over a dozen functional networks have been identified via a technique called resting-state functional magnetic resonance imaging, said Greicius, who is the medical director of the Stanford Center for Memory Disorders.

In resting-state fMRI scans, the individual is asked to simply lie still and relax for several minutes. The results of these scans indicate that even at rest, the brain’s functional networks continue to hum along at their own distinguishable frequencies and phases, like different radio stations playing simultaneously, but quietly, on the same radio.

Digging into fMRI images

However, whether resting-state fMRI-derived images, which measure local blood flows in different places throughout the brain, actually reflect neuronal activity has been controversial.

‘There’s been some skepticism regarding the validity of resting-state network activity,’ said Greicius. ‘We wanted to dig deeper and get to the molecular underpinnings of these imaging results, which indicated that the brain maintains its exquisite functional-network architecture even at rest.’

To start, Greicius and his colleagues computationally blended resting-state fMRI data they’d obtained from eight-minute scans of 15 healthy adults whose sole instructions were to lie still and relax. This enabled them to pinpoint numerous well-delineated functional networks.

Hoping to find genes that might promote or at least be involved in functional connectivity, the investigators next sought gene-expression profiles — measurements of activity levels of each of the human genome’s approximately 20,000 known genes — of regions within corresponding functional networks.

There’s no noninvasive way to obtain gene-profile expressions of brain tissue in living humans. But Jonas Richiardi, Ph.D., a postdoctoral scholar in Greicius’ lab now at the University of Geneva in Switzerland, made use of massive amounts of carefully annotated and meticulously archived data derived from the Allen Institute’s collection of six post-mortem human brain samples. The institute’s scientists have obtained gene-expression profiles of several hundred tissue samples excised from specific locations throughout the brain. Richiardi shares lead authorship of the study with neurology instructor Andre Altmann, Ph.D., who was also a postdoctoral scholar during the study’s duration.

Greicius and his colleagues narrowed their focus to cortical areas associated with four functional networks that are all well characterized in the imaging literature, consist of discrete, noncontiguous regions in both hemispheres, and are well represented in the Allen Institute’s human-brain database. Along with the default-mode network associated with autobiographical memory, they looked at gene-expression profiles in component regions of the brain’s sensorimotor, visuospatial and salience (emotion) networks.

Zeroing in on gene activity

The researchers were hunting specifically for a set of genes whose expression rose or fell in a more synchronized fashion from region to region within a given network than between networks or outside any network. Using sophisticated statistical methods, they identified a set of 136 genes that showed a correlated pattern of gene expression in regions within each network.

These 136 genes weren’t specific to any single network, Greicius noted. Rather, ‘any one of these genes that was being expressed at a high, intermediate or low level in one region of any network, regardless of which network you’d picked, was also being expressed at corresponding levels in the other regions of that network,’ he said.

Importantly, a number of these genes encode proteins that aid in nerve cells’ signature activity: propagating electrical impulses. Some are ion channels, which maintain and modulate voltage differences across nerve cells’ outer membranes. Others are found at the junctions where one nerve cell in a circuit contacts another.

The Stanford team validated their findings by turning to another database. The IMAGEN Consortium has conducted widespread imaging, cognitive and genetic tests on 14-year-olds in an effort to predict who’s at high risk of encountering problems such as substance abuse by age 16. Among other things, the IMAGEN database contains detailed information on tiny variations from the norm in subjects’ genomic sequences. Altmann spearheaded an analysis of the variants present in the 136 genes of interest in 259 healthy adolescents. These subjects’ network-connectivity strength was determined, in part, by the genetic-variant profiles of these 136 genes.

Additional experiments using tissue samples obtained from two additional data sets, the Allen Institute’s mouse-brain and mouse-connectivity atlases, confirmed and amplified the findings from research on human brains. The reliance on large, shared data sets was another important feature of the study and, Altmann said, ‘highlights the value of making scientific data freely available. We had an idea and found collaborators willing to share their painstakingly collected data.’

The identification of functional-connectivity-associated genes sets the stage for targeted clinical applications, such as finding out how neurodegeneration propagates within a network.

‘Our work holds potential implications for a number of neuropsychiatric disorders,’ said Richiardi.

Evidence suggests, for instance, that Alzheimer’s disease spreads from one brain region to the next within the brain’s so-called default-mode network, which is activated when a person is recalling recent autobiographical events. Resting-state imaging holds exceptional potential in cases where task-based fMRI isn’t applicable. Alzheimer’s patients, for example, have difficulty focusing on memory-based tasks. Future work will focus on genes whose expression is correlated within one network, but not in other networks. Focusing on default-mode network-specific genes, for example, may lend novel insights into Alzheimer’s disease.

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Scientists find genetic basis for how much people enjoy music
Cognitive Science

Is humor inherited? Twin study suggests the ability to be funny may not run in the family

July 10, 2025

A first-of-its-kind study set out to discover whether being funny is something you inherit. By testing twins on their joke-making skills, researchers found that your sense of humor might have less to do with DNA than you'd think.

Read moreDetails
Even in healthy adults, high blood sugar levels are linked to impaired brain function
Memory

Neuroscientists decode how people juggle multiple items in working memory

July 8, 2025

New neuroscience research shows how the brain decides which memories deserve more attention. By tracking brain activity, scientists found that the frontal cortex helps direct limited memory resources, allowing people to remember high-priority information more precisely than less relevant details.

Read moreDetails
New study uncovers a surprising effect of cold-water immersion
Cognitive Science

New study uncovers a surprising effect of cold-water immersion

July 8, 2025

Cold-water immersion increases energy expenditure—but it may also drive people to eat more afterward. A study in Physiology & Behavior found participants consumed significantly more food following cold exposure, possibly due to internal cooling effects that continue after leaving the water.

Read moreDetails
Positive attitudes toward AI linked to problematic social media use
Cognitive Science

People with higher cognitive ability have weaker moral foundations, new study finds

July 7, 2025

A large study has found that individuals with greater cognitive ability are less likely to endorse moral values such as compassion, fairness, loyalty, and purity. The results point to a consistent negative relationship between intelligence and moral intuitions.

Read moreDetails
These common sounds can impair your learning, according to new psychology research
Cognitive Science

These common sounds can impair your learning, according to new psychology research

July 4, 2025

Your brain’s ancient defense system might be sabotaging your test scores. New research suggests our "behavioral immune system," which makes us subconsciously alert to signs of illness, can be triggered by coughs and sniffles.

Read moreDetails
From fireflies to brain cells: Unraveling the complex web of synchrony in networks
Addiction

Understanding “neuronal ensembles” could revolutionize addiction treatment

July 3, 2025

The same brain system that rewards you for a delicious meal is hijacked by drugs like fentanyl. A behavioral neuroscientist explains how understanding the specific memories behind these rewards is the key to treating addiction without harming our essential survival instincts.

Read moreDetails
Scientists just uncovered a surprising illusion in how we remember time
Memory

Scientists just uncovered a surprising illusion in how we remember time

July 3, 2025

Our perception of time is more fragile than we think. Scientists have uncovered a powerful illusion where repeated exposure to information makes us misremember it as happening much further in the past, significantly distorting our mental timelines.

Read moreDetails
Peppermint tea boosts memory and attention—but why?
Cognitive Science

Peppermint tea boosts memory and attention—but why?

July 2, 2025

Can a cup of peppermint tea sharpen your mind? A new study suggests it can—but not in the way scientists expected. Improved memory and attention followed the tea, but increased brain blood flow wasn't the reason why.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Scientists identify the brain’s built-in brake for binge drinking

Trump’s speeches stump AI: Study reveals ChatGPT’s struggle with metaphors

Childhood maltreatment linked to emotion regulation difficulties and teen mental health problems

Caffeine may help prevent depression-like symptoms by protecting the gut-brain connection

Secret changes to major U.S. health datasets raise alarms

Moral outrage spreads petitions online—but doesn’t always inspire people to sign them

The triglyceride-glucose index: Can it predict depression risk in the elderly?

People with ADHD exhibit altered brain activity before making high-stakes choices

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy