Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Want to learn a new skill? Faster? Change up your practice sessions

by Johns Hopkins Medicine
January 30, 2016
in Cognitive Science
Photo credit: Miguel Tejada-Flores

Photo credit: Miguel Tejada-Flores

Share on TwitterShare on Facebook

When practicing and learning a new skill, making slight changes during repeat practice sessions may help people master the skill faster than practicing the task in precisely the same way, Johns Hopkins researchers report.

In a study of 86 healthy volunteers asked to learn a computer-based motor skill, those who quickly adjusted to a modified practice session the second time around performed better than when repeating their original task, the researchers found. The results support the idea that a process called reconsolidation, in which existing memories are recalled and modified with new knowledge, plays a key role in the strengthening of motor skills, says senior study author Pablo A. Celnik, M.D., professor of physical medicine and rehabilitation at the Johns Hopkins University School of Medicine.

“What we found is if you practice a slightly modified version of a task you want to master, you actually learn more and faster than if you just keep practicing the exact same thing multiple times in a row,” says Celnik. The work, described in the Jan. 28 edition of the journal Current Biology, has implications not only for leisure skills, like learning to play a musical instrument or a sport, but also for helping patients with stroke and other neurological conditions regain lost motor function, he says.

“Our results are important because little was known before about how reconsolidation works in relation to motor skill development. This shows how simple manipulations during training can lead to more rapid and larger motor skill gains because of reconsolidation,” says Celnik. “The goal is to develop novel behavioral interventions and training schedules that give people more improvement for the same amount of practice time.”

For the study, volunteers came to Celnik’s laboratory to learn and perform an isometric pinch task over the course of two or three 45-minute sessions. This entailed squeezing a device called a force transducer to move a computer cursor across a monitor. The screen test featured five windows and a “home space.” Participants were asked to move the cursor from home to the various windows in a set pattern as quickly and accurately as possible.

The volunteers were randomly assigned to one of three groups. The first group completed a typical training schedule where after the initial training session, they repeated the exact same training lesson six hours later — based on previous studies, the amount of time believed needed to consolidate memories from the first session — and again the next day. The second group performed the first practice session and, after six hours, completed a second training session in which Celnik and colleagues had tweaked the test so that the force needed to be changed ever so slightly in every trial. In this manner, individuals had to constantly adjust their performance despite not being aware of the subtle modifications. The next day, these participants returned to the lab and were asked to repeat the same task they were given during the first session. The third “control” group performed the exact same task just once each day, skipping the second training session altogether.

Celnik says the gains in performance, such as a speedier and more accurate completion of the task, nearly doubled among those in the second group, who were given the altered second session, compared to those in the first group, who repeated the same task, Celnik says.

Highest gains were seen among those subjects who were able to quickly adapt to the change in conditions. Participants in the third group, who skipped the second session, performed approximately 25 percent worse than those in the first group.

Celnik says the alterations in training have to be small, something akin to slightly adjusting the size or weight of a baseball bat, tennis racket or soccer ball in between practice sessions. Current studies by Celnik’s team, still underway and not yet published, suggest that changing a practice session too much, like playing badminton in between tennis bouts, brings no significant benefit to motor learning.

“If you make the altered task too different, people do not get the gain we observed during reconsolidation,” he says. “The modification between sessions needs to be subtle.”

RELATED

Data from 560,000 students reveals a disturbing mental health shift after 2016
Cognitive Science

The neural path from genes to intelligence looks different depending on your age

February 2, 2026
Psychology researchers identify a “burnout to extremism” pipeline
Cognitive Science

Speaking multiple languages appears to keep the brain younger for longer

February 1, 2026
Novel essential oil blend may enhance memory and alertness
Cognitive Science

Novel essential oil blend may enhance memory and alertness

January 30, 2026
Traumatic brain injury may steer Alzheimer’s pathology down a different path
Cognitive Science

New maps of brain activity challenge century-old anatomical boundaries

January 29, 2026
Scientists link popular convenience foods to a measurable loss of cognitive control
Cognitive Science

The psychology behind why we pay to avoid uncertainty

January 28, 2026
The tendency to feel like a perpetual victim is strongly tied to vulnerable narcissism
Cognitive Science

Global brain efficiency fails to predict general intelligence in large study

January 27, 2026
Genetic factors likely confound the link between c-sections and offspring mental health
Memory

Motivation acts as a camera lens that shapes how memories form

January 24, 2026
LLM red teamers: People are hacking AI chatbots just for fun and now researchers have catalogued 35 “jailbreak” techniques
Artificial Intelligence

Are you suffering from “cognitive atrophy” due to AI overuse?

January 22, 2026

STAY CONNECTED

LATEST

Depression and anxiety linked to stronger inflammation in sexual minority adults compared to heterosexuals

High-precision neurofeedback accelerates the mental health benefits of meditation

Stress does not appear to release stored THC into the bloodstream

Half of the racial mortality gap is explained by stress and inflammation

For romantic satisfaction, quantity of affection beats similarity

The surprising reason why cancer patients may be less likely to get Alzheimer’s

Early maternal touch may encourage sympathy and helping behaviors in adolescence

Brain scans reveal neural connectivity deficits in Long COVID and ME/CFS

RSS Psychology of Selling

  • Surprising link found between greed and poor work results among salespeople
  • Intrinsic motivation drives sales performance better than financial rewards
  • New research links faking emotions to higher turnover in B2B sales
  • How defending your opinion changes your confidence
  • The science behind why accessibility drives revenue in the fashion sector
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy