Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

What is going on in your brain when you sleep?

by The Conversation
April 9, 2015
in Cognitive Science
Photo credit: drocpsu

Photo credit: drocpsu

Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

Sleep has profound importance in our lives, such that we spend a considerable proportion of our time engaging in it. Sleep enables the body, including the brain, to recover metabolically, but contemporary research has been moving to focus on the active rather than recuperative role that sleep has on our brain and behaviour.

Sleep is composed of several distinct stages. Two of these, slow-wave (or deep) and REM sleep, reflect very different patterns of brain activity, and have been related to different cognitive processes.

Slow-wave sleep is characterised by synchronised activity of neurons in the neo-cortex firing at a slow rate, between 0.5 and three times per second. The neo-cortex comprises the majority of the cerebral cortex in the brain which plays a role in memory, thought, language and consciousness. In contrast during REM sleep, when most of our dreaming happens, neuronal firing is rapid and synchronised at much higher frequencies, between 30 to 80 times per second.

Such patterns of brain activity during REM sleep are reminiscent of those observed during wakefulness, and for this reason REM sleep is often referred to as “paradoxical” sleep.

Cognitive functions

There is growing evidence that slow-wave sleep is related to the consolidation of memory and is involved in transferring information from the hippocampus, which encodes recent experiences, and forging long-term connections within the neo-cortex. REM sleep has been linked to processes involving abstraction and generalisation of experiences, resulting in creative discovery and improved problem solving.

Though there are substantial similarities between wakefulness and REM sleep, numerous studies have explored differences in the activity of brain regions between these states, with the cingulate cortex, hippocampus and amygdala more active during REM sleep than wakefulness. These regions are particularly interesting to cognitive neuroscientists because they are key areas involved in emotional regulation and emotional memory.

However, which sub-regions are active within these broader cortical and limbic areas – the pathways in the brain that produce these patterns of activation – and the precise function of the activity in these regions during REM sleep is currently under-described.

Cortical activity in rats

A new study published in Science Advances studied the physiology and functionality of REM sleep in a group of rats and provides insight into the cortical activity and the sub-cortical pathways that result in this activity. The level of detail of this study provides a major step forward for our understanding of the effect that REM sleep has on our brain and cognitive behaviour.

The authors studied groups of rats who were allowed to sleep, but prevented from entering REM sleep for three days. Six hours before assessment, half of the rats were allowed to sleep normally, and half continued to be deprived of REM sleep. The rats that were permitted to sleep normally then demonstrated raised levels of REM sleep within those six hours. This enabled a comparison of the effect of recent REM sleep between groups. An additional control group of rats were allowed to sleep normally throughout the study.

Gene expression analysis involves tracking the presence of particular mRNA or proteins that can be identified as the consequences of certain genes operating. The rats who underwent substantial REM sleep before testing were found to demonstrate greater expression of several genes that are associated with syntaptic plasticity (how quickly their synapses can adapt to changes in a local environment) and which affects the efficiency of neural transmission in the hippocampus.

In the neo-cortex, the gene expressions related to how well our synapses adapt also increased following REM sleep, but those related to neural transmission were reduced compared with the group that was prevented from REM sleep. So, the function of REM sleep appears to be due to changes in the way that neurons communicate. This is consistent with the view that REM sleep allows the brain’s memory processing systems to re-balance, which enables effective responses to experiences the next day.

Where in the brain?

In a further study, the same group determined the precise location of where these changes actually occur in the brain. In the neo-cortex, there was a general increase in plasticity throughout several areas, including sensorimotor regions that bring together sensory and motor functions. In the hippocampus, it was generally confined to the dentate gyrus, which is thought to contribute to forming new episodic memories among other things. REM sleep was also associated with reduced neuro-transmission throughout many regions of the neo-cortex, indicating that REM sleep likely results in a general weakening of the connections between synapses, which may enable brain networks to better learn from multiple experiences rather than be affected only by single instances.

The final studies the group conducted determined the source of the cortical changes in plasticity and neuro-transmission during REM sleep. By tracking signal transmission between different brain areas together with chemical lesioning (in which brain areas are temporarily inactivated), they identified two further areas called the claustrum and the supramammillary nucleus as having key roles during REM sleep.

These two areas have been identified as involved in integrating emotion and memory. The claustrum is a very thin layer of neurons that are found underneath the inner neo-cortex. It is known to link to and from very many regions of this part of the brain. As such, the claustrum has been implicated in integrating stimuli from several senses and is involved in linking areas involved in emotional processing and attention.

The supramammillary nucleus, within the hippocampus, is also known to interconnect to multiple areas of the brain, several of which are associated with emotional processing.

The implications of this work provide converging evidence that REM sleep modulates activation and synaptic processing in areas of the brain that contribute to the processing of emotion. This is also consistent with previously untested accounts that suggest REM sleep is important for encoding memories (but without their emotional content). While the role of dreaming during REM sleep is still yet to be linked to observed effects from neuro-chemicals in the brain, understanding what is happening in our brains when we dream could yet prove to be key to processing of emotion and memory.

The ConversationBy Padraic Monaghan, Lancaster University

This article was originally published on The Conversation.
Read the original article.

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Your brain’s insulation might become emergency energy during a marathon
Cognitive Science

Scientists map the hidden architecture of the brain’s default mode network

June 5, 2025

A new study reveals that the brain’s default mode network is made up of distinct anatomical types that support both internal thoughts and external processing. This structural diversity helps explain the network’s role in everything from memory to imagination.

Read moreDetails
Sleep deprivation reduces attention and cognitive processing capacity
Cognitive Science

Sleep deprivation reduces attention and cognitive processing capacity

May 31, 2025

A new study shows that 36 hours without sleep impairs table tennis players’ reaction times, attention, and brain connectivity. The findings reveal how acute sleep deprivation disrupts spatial cognitive processing, with potential consequences for athletic performance and decision-making under pressure.

Read moreDetails
Neuroscientists pinpoint part of the brain that deciphers memory from new experience
Memory

Neuroscientists find individual differences in memory response to amygdala stimulation

May 31, 2025

Stimulating the brain’s amygdala during memory formation can boost recall after 24 hours, a new study finds. But the effect varies: some people’s memory improves, others’ worsens—and baseline memory performance appears to be the best predictor of outcome.

Read moreDetails
MDMA therapy: Side effects appear mild, but there are problems with the evidence
Cognitive Science

Consciousness remains a mystery after major theory showdown

May 30, 2025

A groundbreaking collaboration has tested two of the most influential theories of consciousness—global neuronal workspace and integrated information theory. While neither came out on top, the project marks a major shift in how scientists approach one of the mind’s biggest mysteries.

Read moreDetails
A common calorie-free sweetener alters brain activity and appetite control, new research suggests
Cognitive Science

A common calorie-free sweetener alters brain activity and appetite control, new research suggests

May 30, 2025

A recent brain imaging study finds that sucralose, unlike sugar, increases activity in the hypothalamus and boosts hunger, suggesting that calorie-free sweetness may confuse the brain’s appetite control system.

Read moreDetails
Delusion-like cognitive biases predict conspiracy theory belief
Cognitive Science

Delusion-like cognitive biases predict conspiracy theory belief

May 28, 2025

People prone to conspiracy theories may share cognitive tendencies with those who experience delusional thinking. Two new studies suggest that biases like anomalous perception and impulsive reasoning help explain why some are more likely to embrace conspiratorial beliefs.

Read moreDetails
Psychology study sheds light on why some moments seem to fly by
Memory

Psychology study sheds light on why some moments seem to fly by

May 24, 2025

A new study suggests life feels like it speeds up during periods of personal growth and satisfaction. Rather than routine making time seem short, researchers found that fulfilled, nostalgic memories are more likely to make the past feel like a blur.

Read moreDetails
A colorful brain on a black background
Cognitive Science

Neuroscientists discover how “aha” moments rewire the brain to enhance memory

May 22, 2025

A study using brain scans shows that flashes of insight reorganize neural patterns in the visual cortex and engage memory and emotion regions, helping embed the solution more deeply in long-term memory.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Kids start associating accents with intelligence surprisingly early

Sex after faith: Study reveals how ultra-Orthodox disaffiliates struggle with sexuality

Study links premature ejaculation to altered brain activity and neurotransmitter imbalances

A common herb shows promise for boosting brain health and fighting Alzheimer’s

Researchers are starting to untangle the links between cognitive processes, emotion regulation, and depression

Young adults who experience ghosting are more likely to ghost others

Resilience may protect against psychopathic traits in people with childhood trauma

Sensory issues in autism may stem from co-occurring emotional blindness, not autism itself

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy