Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Zapping the brain’s prefrontal cortex with electricity helps people learn math

by Roi Cohen Kadosh
July 24, 2025
in Cognitive Science, Neuroimaging
Share on TwitterShare on Facebook

A painless, non-invasive brain stimulation technique can significantly improve how young adults learn maths, my colleagues and I found in a recent study. In a paper in PLOS Biology, we describe how this might be most helpful for those who are likely to struggle with mathematical learning because of how their brain areas involved in this skill communicate with each other.

Maths is essential for many jobs, especially in science, technology, engineering and finance. However, a 2016 OECD report suggested that a large proportion of adults in developed countries (24% to 29%) have maths skills no better than a typical seven-year-old. This lack of numeracy can contribute to lower income, poor health, reduced political participation and even diminished trust in others.

Education often widens rather than closes the gap between high and low
achievers, a phenomenon known as the Matthew effect. Those who start with an advantage, such as being able to read more words when starting school, tend to pull further ahead. Stronger educational achievement has been also associated with socioeconomic status, higher motivation and greater engagement with material learned during a class.

Biological factors, such as genes, brain connectivity, and chemical signalling, have been shown in some studies to play a stronger role in learning outcomes than environmental ones. This has been well-documented in different areas, including maths, where differences in biology may explain educational achievements.

To explore this question, we recruited 72 young adults (18–30 years old) and taught them new maths calculation techniques over five days. Some received a placebo treatment. Others received transcranial random noise stimulation (tRNS), which delivers gentle electrical currents to the brain. It is painless and often imperceptible, unless you focus hard to try and sense it.

It is possible tRNS may cause long term side effects, but in previous studies my team assessed participants for cognitive side effects and found no evidence for it.

Participants who received tRNS were randomly assigned to receive it in one of two different brain areas. Some received it over the dorsolateral prefrontal cortex, a region critical for memory, attention, or when we acquire a new cognitive skill. Others had tRNS over the posterior parietal cortex, which processes maths information, mainly when the learning has been accomplished.

Before and after the training, we also scanned their brains and measured levels of key neurochemicals such as gamma-aminobutyric acid (gaba), which we showed previously, in a 2021 study, to play a role in brain plasticity and learning, including maths.

Some participants started with weaker connections between the prefrontal and parietal brain regions, a biological profile that is associated with poorer learning. The study results showed these participants made significant gains in learning when they received tRNS over the prefrontal cortex.

Stimulation helped them catch up with peers who had stronger natural connectivity. This finding shows the critical role of the prefrontal cortex in learning and could help reduce educational inequalities that are grounded in neurobiology.

How does this work? One explanation lies in a principle called stochastic resonance. This is when a weak signal becomes clearer when a small amount of random noise is added.

In the brain, tRNS may enhance learning by gently boosting the activity of underperforming neurons, helping them get closer to the point at which they become active and send signals. This is a point known as the “firing threshold”, especially in people whose brain activity is suboptimal for a task like maths learning.

It is important to note what this technique does not do. It does not make the best
learners even better. That is what makes this approach promising for bridging gaps,
not widening them. This form of brain stimulation helps level the playing field.

Our study focused on healthy, high-performing university students. But in similar studies on children with maths learning disabilities (2017) and with attention-deficit/hyperactivity disorder (2023) my colleagues and I found tRNS seemed to improve their learning and performance in cognitive training.

I argue our findings could open a new direction in education. The biology of the learner matters, and with advances in knowledge and technology, we can develop tools that act on the brain directly, not just work around it. This could give more people the chance to get the best benefit from education.

In time, perhaps personalised, brain-based interventions like tRNS could support learners who are being left behind not because of poor teaching or personal circumstances, but because of natural differences in how their brains work.

Of course, very often education systems aren’t operating to their full potential because of inadequate resources, social disadvantage or systemic barriers. And so any brain-based tools must go hand-in-hand with efforts to tackle these obstacles.The Conversation

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

RELATED

Humans have an internal lunar clock, but we are accidentally destroying it
Cognitive Science

Humans have an internal lunar clock, but we are accidentally destroying it

December 10, 2025
Alcohol use disorder may exacerbate Alzheimer’s disease through shared genetic pathways
Addiction

Alcohol use disorder triggers a distinct immune response linked to neurodegeneration

December 10, 2025
From tango to StarCraft: Creative activities linked to slower brain aging, according to new neuroscience research
Cognitive Science

New neuroscience research reveals surprising biological link between beauty and brain energy

December 9, 2025
Childhood adversity linked to poorer cognitive function across different patterns of aging
Memory

Neuroscientists discover that letting the mind wander may aid passive learning

December 8, 2025
Childhood adversity linked to poorer cognitive function across different patterns of aging
Cognitive Science

Childhood adversity linked to poorer cognitive function across different patterns of aging

December 8, 2025
Altered sense of self in psychosis traced to the spinal cord
Depression

Scientists link inflammation to neural vulnerability in psychotic depression

December 7, 2025
New psychology research reveals why people stay in situationships
Cognitive Science

Blue light exposure alters cortical excitability in young adults, but adolescents respond differently

December 7, 2025
Children with better musical skills may benefit from a prolonged window of brain plasticity
Developmental Psychology

Children with better musical skills may benefit from a prolonged window of brain plasticity

December 6, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Humans have an internal lunar clock, but we are accidentally destroying it

People who show off luxury vacations are viewed as warmer than those who show off luxury goods

Researchers found a specific glitch in how anxious people weigh the future

People prone to boredom tend to adopt faster life history strategies

Exercise might act as a double-edged sword for problematic pornography use

Alcohol use disorder triggers a distinct immune response linked to neurodegeneration

Conservatives are more prone to slippery slope thinking

Childhood trauma linked to worse outcomes in mindfulness therapy for depression

RSS Psychology of Selling

  • Consumers prefer emotionally intelligent AI, but not for guilty pleasures
  • Active listening improves likability but does not enhance persuasion
  • New study maps the psychology behind the post-holiday return surge
  • Unlocking the neural pathways of influence
  • How virtual backgrounds influence livestream sales
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy