Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health

A natural compound can block the formation of toxins associated with Parkinson’s disease

by University of Cambridge
January 16, 2017
in Mental Health
Photo credit: Perelman School of Medicine

Photo credit: Perelman School of Medicine

Share on TwitterShare on Facebook
Follow PsyPost on Google News

A naturally-occurring compound has been found to block a molecular process thought to underlie Parkinson’s Disease, and to suppress its toxic products, scientists have reported.

The findings, although only preliminary, suggest that the compound, called squalamine, could be exploited in various ways as the basis of a potential treatment for Parkinson’s Disease. The compound has previously been used in clinical trials for cancer and eye conditions in the United States, and a trial in Parkinson’s Disease patients is now being planned by one of the researchers involved in the study.

Squalamine is a steroid which was discovered in the 1990s in dogfish sharks, although the form now used by scientists is a safer, synthetic analogue. To date, it has been extensively investigated as a potential anti-infective and anticancer therapy.

But in the new study, researchers discovered that squalamine also dramatically inhibits the early formation of toxic aggregates of the protein alpha-synuclein – a process thought to start a chain reaction of molecular events eventually leading to Parkinson’s Disease. Remarkably, they also then found that it can suppress the toxicity of these poisonous particles.

The researchers tested squalamine in both cell cultures in the lab, and in an animal model using nematode worms. While their findings therefore only represent a step towards a treatment for Parkinson’s Disease in humans, they described the results as representing significant progress.

The study was led by academics from the Centre for Misfolding Diseases, based in the Chemistry Department at the University of Cambridge in the United Kingdom, and Georgetown University and the National Institutes of Health in the United States. Scientists from the Netherlands, Italy and Spain also played key roles. The findings are published in Proceedings of The National Academy of Sciences.

Professor Christopher Dobson, who is one of the authors and Master of St John’s College, as well as a Professor in the Chemistry Department at the University of Cambridge, said: “To our surprise, we found evidence that squalamine not only slows down the formation of the toxins associated with Parkinson’s Disease, but also makes them less toxic altogether.”

“If further tests prove to be successful, it is possible that a drug treating at least some of the symptoms of Parkinson’s Disease could be developed from squalamine. We might then be able to improve on that incrementally, by searching for better molecules that augment its effects.”

Professor Michele Vendruscolo, from the Department of Chemistry at the University of Cambridge and a co-author, said: “This is an encouraging step forward in our efforts to discover potential drugs against Parkinson’s Disease. Squalamine can prevent alpha-synuclein from malfunctioning, essentially by normalising its binding to lipid membranes. If there are going to be ways to beat the disease, it seems likely that this is one that may work.”

The study stemmed from research led by Dr Michael Zasloff, professor of surgery and pediatrics at Georgetown University School of Medicine in the USA. Zasloff, who also co-authored the latest study, discovered squalamine in 1993 and has since led extensive work exploring its potential as a treatment for conditions including cancer.

In the new study, the researchers explored squalamine’s capacity to displace alpha-synuclein from cell membranes – a phenomenon that was first observed in the laboratory headed by another co-author, Dr Ad Bax, in the National Institutes of Health in Bethesda, USA. This finding has significant implications for Parkinson’s Disease, because alpha-synuclein works by binding to the membranes of tiny, bubble-like structures called synaptic vesicles, which help to transfer neurotransmitters between neurons.

Under normal circumstances, the protein thus aids the effective flow of chemical signals, but in some instances, it malfunctions and instead begins to clump together, creating toxic particles harmful to brain cells. This clustering is the hallmark of Parkinson’s Disease.

The researchers carried out a series of experiments which analysed the interaction between squalamine, alpha-synuclein and lipid vesicles, building on earlier work from Cambridge scientists which showed the vital role that vesicles play in initiating the aggregation. They found that squalamine inhibits the aggregation of the protein by competing for binding sites on the surfaces of synthetic vesicles. By displacing the protein in this way, it significantly reduces the rate at which toxic particles form.

Further tests, carried out with human neuronal cells, then revealed another key factor – that squalamine also suppresses the toxicity of these particles.

Finally, the group tested the impact of squalamine in an animal model of Parkinson’s Disease, by using nematode worms genetically programmed to over-express alpha-synuclein in their muscle cells. As the worms develop, alpha-synuclein aggregation causes them to become paralysed, but squalamine prevented the paralysis from taking effect. “We could literally see that the oral treatment of squalamine did not allow alpha-synuclein to cluster, and prevented muscular paralysis inside the worms,” Zasloff said.

Together, the results imply that squalamine could be used as the basis of a treatment targeting at least some of the symptoms of Parkinson’s Disease. Zasloff says he is now planning a clinical trial with squalamine in Parkinson’s Disease patients in the US.

Further research is, however, needed to determine what the precise benefits of squalamine would be – and what form any resulting drug might take. In particular, it is not yet clear whether squalamine can reach the specific regions of the brain where the main molecular processes determining Parkinson’s Disease take place.

The researchers suggest that it would be particularly interesting to start investigating the efficacy of squalamine as a means to alleviate certain symptoms. If taken orally, for instance, the compound may perhaps relieve the severe constipation many patients experience, by targeting the gastrointestinal system and affecting alpha-synuclein in the gut.

It is also conceivable that a treatment of that sort could “cascade” signals to other parts of the body. “Targeting alpha-synuclein in the gut may perhaps in some cases be sufficient to delay the progress of other aspects of Parkinson’s Disease, at least for symptoms concerning the peripheral nervous system,” Vendruscolo said.

“In many ways squalamine gives us a lead rather than a definitive treatment,” Professor Dobson added. “Parkinson’s Disease has many symptoms and we hope that either this compound, or a derivative of it with a similar mechanism of action, could alleviate at least some of them.”

“One of the most exciting prospects is that, subject to further tests, we might be able to use it to make improvements to patients’ lives, while also studying other compounds with the aim of developing a more powerful treatment in the future.”

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Psilocybin-assisted neurofeedback shows promise in preliminary research
Anxiety

Brain rhythms tied to social anxiety may explain why mistakes linger in memory

May 11, 2025

A new study suggests that people with social anxiety are more likely to remember faces they saw during mistakes. Brain recordings revealed heightened activity during errors, which predicted stronger memory for those moments—possibly explaining why social anxiety persists.

Read moreDetails
Common antidepressant may increase pain sensitivity later in life if taken during adolescence
Depression

Common antidepressant may increase pain sensitivity later in life if taken during adolescence

May 11, 2025

A new animal study shows that adolescent use of fluoxetine, a commonly prescribed antidepressant, may have long-lasting effects on how the brain processes pain. Female mice exposed to the drug displayed increased sensitivity to heat stimuli as adults.

Read moreDetails
New neuroscience research sheds light on how anxiety affects children’s emotional processing
Mental Health

Schizophrenia may accelerate brain ageing, new study finds

May 10, 2025

New research suggests that schizophrenia may involve accelerated brain ageing. Using a blood test that detects neuron-derived proteins, scientists found that people with schizophrenia show faster neurological decline compared to healthy individuals—and even those with bipolar disorder.

Read moreDetails
Microdoses of LSD enhance neural complexity, study finds
Depression

Little-known psychedelic drug shows promise in treating low motivation in depression

May 9, 2025

Researchers investigating the psychedelic drug DOPR discovered that very low doses can enhance motivation in low-performing mice—without triggering behaviors linked to hallucinations. The findings point to the therapeutic potential of psychedelics at doses too low to alter perception.

Read moreDetails
AI-driven brain training reduces impulsiveness in kids with ADHD, study finds
ADHD

AI-driven brain training reduces impulsiveness in kids with ADHD, study finds

May 9, 2025

Researchers found that a personalized, game-based cognitive therapy powered by artificial intelligence significantly reduced impulsiveness and inattentiveness in children with ADHD. Brain scans showed signs of neurological improvement, highlighting the potential of AI tools in mental health treatment.

Read moreDetails
Underweight individuals are at an increased risk of suicide, study finds
Mental Health

Underweight individuals are at an increased risk of suicide, study finds

May 8, 2025

New research from South Korea shows that underweight individuals are 44% more likely to die by suicide compared to those with normal weight, while overweight and obese people are less likely. The study used data from over 4 million adults.

Read moreDetails
Mental illness doesn’t explain who owns or carries guns
Mental Health

Mental illness doesn’t explain who owns or carries guns

May 8, 2025

A new study challenges the popular belief that mental illness drives gun ownership. Instead, the research finds that cultural background and personal experiences, not clinical conditions, best explain why people own or carry firearms in the United States.

Read moreDetails
New study: AI can identify autism from tiny hand motion patterns
Artificial Intelligence

New study: AI can identify autism from tiny hand motion patterns

May 8, 2025

Hand movements during a basic grasping task can help identify autism, new research suggests. The study used motion tracking and machine learning to analyze finger movements and found that classification accuracy exceeded 84% using just two sensors.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

11 fascinating studies that reveal how motherhood shapes minds, bodies, and brains

Brain rhythms tied to social anxiety may explain why mistakes linger in memory

Common antidepressant may increase pain sensitivity later in life if taken during adolescence

Maternal warmth in childhood predicts key personality traits years later

Psilocybin use has surged in the United States since 2019

Knowledge isn’t enough: What really predicts condom use in teens

Schizophrenia may accelerate brain ageing, new study finds

New study uncovers an intriguing liver–brain connection

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy