Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

3-D footage of nematode brains links neurons with motion and behavior

by Princeton University
January 2, 2016
in Cognitive Science
Photo credit: Ardy Rahman/UCI Research

Photo credit: Ardy Rahman/UCI Research

Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

Princeton University researchers have captured among the first recordings of neural activity in nearly the entire brain of a free-moving animal. The three-dimensional recordings could provide scientists with a better understanding of how neurons coordinate action and perception in animals.

The researchers report in the journal Proceedings of the National Academy of Sciences a technique that allowed them to record 3-D footage of neural activity in the nematode Caenorhabditis elegans, a worm species 1 millimeter long with a nervous system containing a mere 302 neurons. The researchers correlated the activity of 77 neurons from the animal’s nervous system with specific behaviors, such as backward or forward motion and turning.

Much previous work related to neuron activity either focuses on small subregions of the brain or is based on observations of organisms that are unconscious or somehow limited in mobility, explained corresponding author Andrew Leifer, an associate research scholar in Princeton’s Lewis-Sigler Institute for Integrative Genomics.

“This system is exciting because it provides the most detailed picture yet of brain-wide neural activity with single-neuron resolution in the brain of an animal that is free to move around,” Leifer said.

“Neuroscience is at the beginning of a transition towards larger-scale recordings of neural activity and towards studying animals under more natural conditions,” he said. “This work helps push the field forward on both fronts.”

A current focus in neuroscience is understanding how networks of neurons coordinate to produce behavior, Leifer said. The technology to record from numerous neurons as an animal goes about its normal activities, however, has been slow to develop, he said. Neural networks are infinitesimal arrangements of chemical signals and electrical impulses that can include, as in humans, billions of cells.

The simpler nervous system of C. elegans provided the researchers with a more manageable testing ground for their instrument. Yet, it also could reveal information about how neurons work together that applies to more complex organisms, Leifer said. For instance, the researchers were surprised by the number of neurons involved in the seemingly simple act of turning around.

“One reason we were successful was that we chose to work with a very simple organism,” Leifer said. “It would be immensely more difficult to perform whole-brain recordings in humans. The technology needed to perform similar recordings in humans is many years away.

“By studying how the brain works in a simple animal like the worm, however, we hope to gain insights into how collections of neurons work that are universal for all brains, even humans,” he said.

Leifer worked with co-first authors Jeffrey Nguyen, a postdoctoral research associate in the Lewis-Sigler Institute, and Frederick Shipley, a former research associate in the Lewis-Sigler Institute now a Ph.D. candidate in biophysics at Harvard University. The team also included Joshua Shaevitz, an associate professor of physics and the Lewis-Sigler Institute for Integrative Genomics; Ashley Linder, Mochi Liu and Sagar Setru, graduate students under Leifer and Shaevitz; and George Plummer, a former research associate at the Lewis-Sigler Institute who is now a medical student at Tufts University.

The researchers designed an instrument that captures calcium levels in brain cells as they communicate with one another. The level of calcium in each brain cell tells the researchers how active that cell is in its communication with other cells in the nervous system. The researchers induced the nemotodes’ brain cells to generate a protein known as a calcium indicator that becomes fluorescent when it comes in contact with calcium.

The researchers used a special type of microscope to record in 3-D both the nematodes’ free movements and neuron-level calcium activity for more than four minutes. Three-dimensional software the researchers designed monitored the position of an animal’s head in real time as a motorized platform automatically adjusted to keep the animal within the field of view of a series of cameras.

The entire setup drew from various disciplines and techniques, including physics, computer science and engineering, Leifer said. For instance, the real-time computer vision algorithms the researchers used to track the worms’ brains are similar in principle to the ones used in robotics or in self-driving cars.

Even more about the inner workings of the C. elegans nervous system remains to be extracted from the researchers’ data over the next year, Leifer said. The team is currently working to flesh out the correlations between neural activity and behavior in general.

“These recordings are very large and we have only begun the process of carefully mining all of the data,” Leifer said.

“An exciting next step is to use correlations in our recordings to build mathematical and computer models of how the brain functions,” he said. “We can use these models to generate hypotheses about how neural activity generates behavior. We plan to then test these hypotheses, for example, by stimulating specific neurons in an organism and observing the resulting behavior.”

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Scientists observe lasting cognitive deficits in long COVID patients
Cognitive Science

Therapeutic video game shows promise for post-COVID cognitive recovery

May 20, 2025

A new study finds that a therapeutic video game, AKL-T01, improved task-switching and processing speed in people with post-COVID cognitive deficits. While sustained attention did not improve, participants reported better quality of life and reduced fatigue after six weeks of gameplay.

Read moreDetails
Brain oscillations reveal dynamic shifts in creative thought during metaphor generation
Cognitive Science

Brain oscillations reveal dynamic shifts in creative thought during metaphor generation

May 19, 2025

A new study reveals that creative metaphor generation involves shifting patterns of brain activity, with alpha oscillations playing a key role at different stages of the process, offering fresh insight into the neural dynamics behind verbal creativity.

Read moreDetails
Surprisingly widespread brain activity supports economic decision-making, new study finds
Cognitive Science

Surprisingly widespread brain activity supports economic decision-making, new study finds

May 19, 2025

A new study using direct brain recordings reveals that human economic decision-making is not localized to a single brain region. Instead, multiple areas work together, with high-frequency activity encoding risk, reward probability, and the final choice itself.

Read moreDetails
Scientists use brain activity to predict StarCraft II skill in fascinating new neuroscience research
Cognitive Science

Scientists use brain activity to predict StarCraft II skill in fascinating new neuroscience research

May 16, 2025

A study combining brain scans and gameplay data reveals that players with more efficient visual attention and stronger white matter connections excel at StarCraft II. The results highlight how neural traits shape success in cognitively demanding video games.

Read moreDetails
Neuroscientists discover music’s hidden power to reshape memory
Memory

Neuroscientists discover music’s hidden power to reshape memory

May 14, 2025

A new neuroimaging study reveals that listening to emotionally charged music during memory recall can change how we remember events. The music not only shaped what participants remembered but also altered the emotional tone of their memories one day later.

Read moreDetails
Study links anomalous experiences to subconscious connectedness and other psychological traits
Cognitive Science

Study links anomalous experiences to subconscious connectedness and other psychological traits

May 13, 2025

A new study suggests that unusual experiences like déjà vu or premonitions are not only common but linked to a distinct psychological trait called subconscious connectedness. Researchers found that people high in this trait reported significantly more anomalous experiences.

Read moreDetails
Eye-tracking study suggests that negative comments on social media are more attention-grabbing than positive comments
Cognitive Science

Can you train your brain to unsee optical illusions? Scientists think so

May 12, 2025

A recent study found that radiologists are less susceptible to optical illusions, likely due to their intensive visual training. The research challenges long-standing beliefs that illusions are automatic and suggests perceptual skills can be shaped over time.

Read moreDetails
Diets high in fat and sugar appear to harm cognitive function
Cognitive Science

Diets high in fat and sugar appear to harm cognitive function

May 10, 2025

Consuming a Western-style diet packed with sugar and saturated fats may hurt your brain, not just your waistline. A new study shows poorer performance on spatial memory tasks among people with diets high in processed, unhealthy foods.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Cognitive training may reduce negative self-perceptions in people with depression and PTSD

Genetic essentialism more common among supporters of radical right-wing parties

Enjoying nature, not just visiting it, linked to greater happiness and life satisfaction, study finds

New study finds that nostalgic memories become more bittersweet over time

Narcissists are more likely to become addicted to social networking sites

New study highlights power—not morality—as key motivator behind competitive victimhood

Attractiveness shapes beliefs about whether faces are real or AI-generated, study finds

Neuroforecasting: New research shows brain activity can predict crowd preferences

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy