Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

3-D footage of nematode brains links neurons with motion and behavior

by Princeton University
January 2, 2016
in Cognitive Science
Photo credit: Ardy Rahman/UCI Research

Photo credit: Ardy Rahman/UCI Research

Share on TwitterShare on Facebook
Follow PsyPost on Google News

Princeton University researchers have captured among the first recordings of neural activity in nearly the entire brain of a free-moving animal. The three-dimensional recordings could provide scientists with a better understanding of how neurons coordinate action and perception in animals.

The researchers report in the journal Proceedings of the National Academy of Sciences a technique that allowed them to record 3-D footage of neural activity in the nematode Caenorhabditis elegans, a worm species 1 millimeter long with a nervous system containing a mere 302 neurons. The researchers correlated the activity of 77 neurons from the animal’s nervous system with specific behaviors, such as backward or forward motion and turning.

Much previous work related to neuron activity either focuses on small subregions of the brain or is based on observations of organisms that are unconscious or somehow limited in mobility, explained corresponding author Andrew Leifer, an associate research scholar in Princeton’s Lewis-Sigler Institute for Integrative Genomics.

“This system is exciting because it provides the most detailed picture yet of brain-wide neural activity with single-neuron resolution in the brain of an animal that is free to move around,” Leifer said.

“Neuroscience is at the beginning of a transition towards larger-scale recordings of neural activity and towards studying animals under more natural conditions,” he said. “This work helps push the field forward on both fronts.”

A current focus in neuroscience is understanding how networks of neurons coordinate to produce behavior, Leifer said. The technology to record from numerous neurons as an animal goes about its normal activities, however, has been slow to develop, he said. Neural networks are infinitesimal arrangements of chemical signals and electrical impulses that can include, as in humans, billions of cells.

The simpler nervous system of C. elegans provided the researchers with a more manageable testing ground for their instrument. Yet, it also could reveal information about how neurons work together that applies to more complex organisms, Leifer said. For instance, the researchers were surprised by the number of neurons involved in the seemingly simple act of turning around.

“One reason we were successful was that we chose to work with a very simple organism,” Leifer said. “It would be immensely more difficult to perform whole-brain recordings in humans. The technology needed to perform similar recordings in humans is many years away.

“By studying how the brain works in a simple animal like the worm, however, we hope to gain insights into how collections of neurons work that are universal for all brains, even humans,” he said.

Leifer worked with co-first authors Jeffrey Nguyen, a postdoctoral research associate in the Lewis-Sigler Institute, and Frederick Shipley, a former research associate in the Lewis-Sigler Institute now a Ph.D. candidate in biophysics at Harvard University. The team also included Joshua Shaevitz, an associate professor of physics and the Lewis-Sigler Institute for Integrative Genomics; Ashley Linder, Mochi Liu and Sagar Setru, graduate students under Leifer and Shaevitz; and George Plummer, a former research associate at the Lewis-Sigler Institute who is now a medical student at Tufts University.

The researchers designed an instrument that captures calcium levels in brain cells as they communicate with one another. The level of calcium in each brain cell tells the researchers how active that cell is in its communication with other cells in the nervous system. The researchers induced the nemotodes’ brain cells to generate a protein known as a calcium indicator that becomes fluorescent when it comes in contact with calcium.

The researchers used a special type of microscope to record in 3-D both the nematodes’ free movements and neuron-level calcium activity for more than four minutes. Three-dimensional software the researchers designed monitored the position of an animal’s head in real time as a motorized platform automatically adjusted to keep the animal within the field of view of a series of cameras.

The entire setup drew from various disciplines and techniques, including physics, computer science and engineering, Leifer said. For instance, the real-time computer vision algorithms the researchers used to track the worms’ brains are similar in principle to the ones used in robotics or in self-driving cars.

Even more about the inner workings of the C. elegans nervous system remains to be extracted from the researchers’ data over the next year, Leifer said. The team is currently working to flesh out the correlations between neural activity and behavior in general.

“These recordings are very large and we have only begun the process of carefully mining all of the data,” Leifer said.

“An exciting next step is to use correlations in our recordings to build mathematical and computer models of how the brain functions,” he said. “We can use these models to generate hypotheses about how neural activity generates behavior. We plan to then test these hypotheses, for example, by stimulating specific neurons in an organism and observing the resulting behavior.”

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Autism severity rooted in embryonic brain growth, study suggests
Cognitive Science

Common pollutant in drinking water linked to brain damage and cognitive impairment

July 17, 2025

New research in mice reveals that prolonged exposure to "forever chemicals," or PFAS, can disrupt brain function and impair memory, even at low concentrations. The findings add to growing evidence that these common chemicals may pose significant risks to brain health.

Read moreDetails
Scientists find genetic basis for how much people enjoy music
Cognitive Science

Is humor inherited? Twin study suggests the ability to be funny may not run in the family

July 10, 2025

A first-of-its-kind study set out to discover whether being funny is something you inherit. By testing twins on their joke-making skills, researchers found that your sense of humor might have less to do with DNA than you'd think.

Read moreDetails
Even in healthy adults, high blood sugar levels are linked to impaired brain function
Memory

Neuroscientists decode how people juggle multiple items in working memory

July 8, 2025

New neuroscience research shows how the brain decides which memories deserve more attention. By tracking brain activity, scientists found that the frontal cortex helps direct limited memory resources, allowing people to remember high-priority information more precisely than less relevant details.

Read moreDetails
New study uncovers a surprising effect of cold-water immersion
Cognitive Science

New study uncovers a surprising effect of cold-water immersion

July 8, 2025

Cold-water immersion increases energy expenditure—but it may also drive people to eat more afterward. A study in Physiology & Behavior found participants consumed significantly more food following cold exposure, possibly due to internal cooling effects that continue after leaving the water.

Read moreDetails
Positive attitudes toward AI linked to problematic social media use
Cognitive Science

People with higher cognitive ability have weaker moral foundations, new study finds

July 7, 2025

A large study has found that individuals with greater cognitive ability are less likely to endorse moral values such as compassion, fairness, loyalty, and purity. The results point to a consistent negative relationship between intelligence and moral intuitions.

Read moreDetails
These common sounds can impair your learning, according to new psychology research
Cognitive Science

These common sounds can impair your learning, according to new psychology research

July 4, 2025

Your brain’s ancient defense system might be sabotaging your test scores. New research suggests our "behavioral immune system," which makes us subconsciously alert to signs of illness, can be triggered by coughs and sniffles.

Read moreDetails
From fireflies to brain cells: Unraveling the complex web of synchrony in networks
Addiction

Understanding “neuronal ensembles” could revolutionize addiction treatment

July 3, 2025

The same brain system that rewards you for a delicious meal is hijacked by drugs like fentanyl. A behavioral neuroscientist explains how understanding the specific memories behind these rewards is the key to treating addiction without harming our essential survival instincts.

Read moreDetails
Scientists just uncovered a surprising illusion in how we remember time
Memory

Scientists just uncovered a surprising illusion in how we remember time

July 3, 2025

Our perception of time is more fragile than we think. Scientists have uncovered a powerful illusion where repeated exposure to information makes us misremember it as happening much further in the past, significantly distorting our mental timelines.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Key Alzheimer’s protein found at astonishingly high levels in healthy newborns

People’s ideal leader isn’t hyper-masculine — new study shows preference for androgynous traits

Chronic pain rewires how the brain processes punishment, new research suggests

Common antidepressants and anti-anxiety drugs tied to major shifts in gut microbiome composition

New psychology study: Inner reasons for seeking romance are a top predictor of finding it

Scientists demonstrate that “AI’s superhuman persuasiveness is already a reality”

Cannabis alternative 9(R)-HHC may be as potent as THC, study in mice suggests

A single dose of lamotrigine causes subtle changes in emotional memory

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy