Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health Anxiety

AI-powered study reveals brain patterns behind small animal phobia

by Eric W. Dolan
December 28, 2024
in Anxiety, Artificial Intelligence, Neuroimaging
[Adobe Stock]

[Adobe Stock]

Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

A new study recently published in Psychophysiology has used machine learning to identify brain structures and networks associated with small animal phobia. The findings reveal distinct gray matter features and macro-networks that differentiate individuals with this phobia from those without it. These results not only highlight the brain’s role in phobic reactions but also suggest pathways for potential future interventions.

Small animal phobia, which involves an intense and irrational fear of creatures like insects, spiders, or rodents, affects about 10% of the population. Despite its prevalence, the neurological mechanisms underlying this condition remain poorly understood. Previous studies have identified various brain regions activated during exposure to phobic stimuli but often relied on limited sample sizes or focused on narrow brain areas. The current study aimed to address these gaps by employing a whole-brain approach and advanced machine learning techniques.

“At the Clinical and Affective Neuroscience Lab, our focus is on developing neuro-predictive models of personality and normal and abnormal affective states,” said study author Alessandro Grecucci, a professor of affective neuroscience and neurotechnology at the University of Trento.

“Small animal phobia is a particular type of anxiety disorder that has been poorly explored in neuroscientific research. Of note, the few studies conducted so far have suffered from some methodological limitations, such as the use of massive univariate analyses and small, unbalanced samples, resulting in inconsistent findings. Moreover, the possibility of predicting small animal phobia from brain features has not been assessed.”

For their study, the research team analyzed structural brain imaging data from 122 adult participants, 32 of whom were diagnosed with small animal phobia. The remaining 90 participants served as a control group. Participants with the phobia were identified using clinical diagnostic tools, ensuring that their condition was the primary psychological disorder. All participants underwent high-resolution magnetic resonance imaging (MRI) scans, which were then processed using advanced neuroimaging software.

To analyze the data, researchers employed a binary support vector machine, a machine learning algorithm designed to identify patterns in complex datasets. The model was trained to classify phobic and non-phobic individuals based on gray matter features. To enhance reliability, the team used cross-validation techniques and accounted for differences in imaging equipment.

The analysis revealed significant structural differences in the brains of individuals with small animal phobia compared to controls. At a whole-brain level, the machine learning model achieved an accuracy of approximately 80%, demonstrating its ability to differentiate phobic individuals based on their brain anatomy. Several key brain regions emerged as pivotal in the classification process:

  • Cerebellum: Traditionally associated with motor coordination, this region was implicated in emotional processing and fear-related responses in phobic individuals.
  • Amygdala: Known for its role in fear and threat detection, the amygdala showed structural differences that likely contribute to heightened emotional responses.
  • Temporal lobes and temporal pole: These regions, involved in memory and emotional processing, may enhance the recall and emotional salience of phobic stimuli.
  • Frontal cortex: The orbitofrontal cortex and other frontal areas, essential for emotional regulation and decision-making, appeared to play a role in controlling phobic responses.
  • Thalamus: This sensory relay center may heighten sensory processing in response to phobic stimuli.

“This study aimed at developing a neuro-predictive model to detect individuals with small animal phobia based on morphometric features (such as grey or white matter), utilizing a machine learning method known as binary support vector machine (SVM) approach,” Grecucci told PsyPost. “This model identified a set of brain regions associated with emotional perception and regulation, cognitive control, and sensory integration, including the amygdala, the cerebellum, the temporal pole, the temporal lobes, and the thalamus. These regions are highly predictive of having a small animal phobia. In other words, if you have morphometric alterations in these regions you probably have a small animal phobia.”

The analysis also explored specific brain networks to understand their collective contribution to small animal phobia. The default mode network emerged as the most predictive, outperforming the whole-brain analysis with an accuracy of over 80%. This network, typically associated with self-referential thinking, may reflect heightened internal focus and rumination linked to phobic fears. The affective network, comprising regions such as the amygdala, orbitofrontal cortex, and insula, also showed strong predictive power, highlighting its role in emotional regulation and reactivity.

“Our findings revealed that the default mode network was among the most predictive, reaffirming its significant role in psychopathology,” Grecucci said. “Furthermore, we examined a novel affective network, comprising cortical and subcortical regions previously linked to emotional processing, which demonstrated an excellent predictive power.”

Other networks, including the central executive network and the sensorimotor network, demonstrated significant but less precise contributions to classification. The central executive network, involved in attentional control, may reflect heightened vigilance toward threat-related stimuli. The sensorimotor network likely represents the physical manifestations of phobic responses, such as avoidance behaviors and heightened readiness for action.

While the study represents a significant advancement in understanding small animal phobia, it has limitations. The relatively small sample size, particularly of phobic individuals, may limit the generalizability of the findings. Future studies with larger and more diverse samples are needed to validate and expand upon these results.

Additionally, this study focused exclusively on gray matter features, excluding other potentially relevant aspects such as white matter or functional connectivity. Incorporating these factors in future research could provide a more comprehensive understanding of the brain mechanisms underlying phobias.

“We believe this line of research on neuro-predictive models of normal and abnormal affective states that rely on machine learning methods may provide valuable insights into the neural basis of psychological disorders, offering novel research directions and suggesting potential strategies for improved diagnostics and treatment,” Grecucci said.

The study, “The phobic brain: Morphometric features correctly classify individuals with small animal phobia,” was authored by Alessandro Scarano, Ascensión Fumero, Teresa Baggio, Francisco Rivero, Rosario J. Marrero, Teresa Olivares, Wenceslao Peñate, Yolanda Álvarez-Pérez, Juan Manuel Bethencourt, and Alessandro Grecucci.

TweetSendScanShareSendPin1ShareShareShareShareShare

RELATED

Artificial intelligence: 7 eye-opening new scientific discoveries
Artificial Intelligence

Artificial intelligence: 7 eye-opening new scientific discoveries

May 8, 2025

As artificial intelligence becomes more advanced, researchers are uncovering both how these systems behave and how they influence human life. These seven recent studies offer insights into the psychology of AI—and what happens when humans and machines interact.

Read moreDetails
New study: AI can identify autism from tiny hand motion patterns
Artificial Intelligence

New study: AI can identify autism from tiny hand motion patterns

May 8, 2025

Hand movements during a basic grasping task can help identify autism, new research suggests. The study used motion tracking and machine learning to analyze finger movements and found that classification accuracy exceeded 84% using just two sensors.

Read moreDetails
Cognitive psychologist explains why AI images fool so many people
Artificial Intelligence

Cognitive psychologist explains why AI images fool so many people

May 7, 2025

Despite glaring errors, many AI-generated images go undetected by casual viewers. A cognitive psychologist explores how attention, perception, and mental shortcuts shape what we notice—and what we miss—while scrolling through our increasingly synthetic digital feeds.

Read moreDetails
A dose of psilocybin stirred the brain of a barely conscious woman
Neuroimaging

A dose of psilocybin stirred the brain of a barely conscious woman

May 7, 2025

In a groundbreaking case report, scientists administered psilocybin to a woman in a minimally conscious state and observed increased brain complexity and new spontaneous behavior—offering a glimpse into how psychedelics might influence consciousness in severe brain injury patients.

Read moreDetails
Antidepressant escitalopram boosts amygdala activity
Early Life Adversity and Childhood Maltreatment

Maltreatment in childhood linked to smaller hippocampus volume through adolescence

May 7, 2025

A new longitudinal brain imaging study in Brazil reveals that childhood maltreatment is linked to reduced volume in the right hippocampus—a key brain region for memory and emotion. This change persists through adolescence, even after accounting for symptoms of depression.

Read moreDetails
Scientists shed new light on the mysterious memory-altering power of sleep
Neuroimaging

Scientists shed new light on the mysterious memory-altering power of sleep

May 7, 2025

Scientists found that sleep plays an active role in transforming how memories are stored. After an immersive experience, participants remembered the order of events better after sleeping, suggesting the brain prioritizes storylines over details during deep sleep.

Read moreDetails
Genetic risk for alcoholism linked to brain immune cell response, study finds
Addiction

Genetic risk for alcoholism linked to brain immune cell response, study finds

May 7, 2025

New research shows that microglia—the brain’s immune cells—respond more strongly to alcohol in people with a high genetic risk for alcohol use disorder. The findings offer insight into how inherited factors can shape brain responses to alcohol exposure.

Read moreDetails
Neuroscientists uncover a fascinating fact about social thinking in the brain
Cognitive Science

Neuroscientists uncover a fascinating fact about social thinking in the brain

May 7, 2025

Our brains process social similarity in two ways—by comparing people to each other and by comparing them to ourselves. A new study using brain imaging reveals that these forms of person knowledge are represented in separate areas of the brain.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Scientists studied Fox News — here’s what they discovered

Researchers uncover causal evidence that cannabis legalization reduces problematic consumption

Underweight individuals are at an increased risk of suicide, study finds

Mental illness doesn’t explain who owns or carries guns

Artificial intelligence: 7 eye-opening new scientific discoveries

Children’s facial expressions reveal fear response to gender-nonconforming boys, study finds

Online incel forums generate “dark emotional energy” that reinforces toxic group identity

Scientists use economic game to reveal sex differences in jealousy triggers

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy