Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science Memory

Brain ripples play a key role in solidifying emotional memories

by Eric W. Dolan
September 1, 2024
in Memory, Neuroimaging
(Photo credit: DALL·E)

(Photo credit: DALL·E)

Share on TwitterShare on Facebook

A recent study published in Nature Communications sheds light on why emotional memories are often more vivid and lasting than non-emotional ones. The research reveals that certain brain activities, known as “ripples,” play an important role in enhancing the storage and recall of emotional experiences.

By examining brain waves in patients undergoing epilepsy treatment, researchers found that emotional experiences increase specific brain activity in the amygdala, which in turn triggers ripple events in the hippocampus. These ripples help replay and strengthen the memory, making it more likely to be remembered later.

“Everyone knows that emotionally charged memories tend to be more memorable, but the exact neural mechanisms behind this phenomenon remain unclear. Understanding these mechanisms could not only deepen our scientific knowledge but also offer new approaches to treating memory and emotion-related disorders, such as PTSD,” said study author Haoxin Zhang, a neuroscientist and bioengineer at the University of California, Irvine.

The researchers conducted their study with a unique group of participants: seven patients with epilepsy who were undergoing pre-surgical monitoring. These patients had electrodes implanted in their brains to help locate the source of their seizures, providing the researchers with a rare opportunity to directly record brain activity from the amygdala and hippocampus.

The experiment was designed to test how the brain responds to emotionally charged stimuli. Participants were shown a series of images that varied in emotional intensity, from neutral to highly arousing. After viewing each image, they were asked to rate its emotional content as negative, neutral, or positive.

Later, participants were shown a mix of images they had seen before along with new ones and were asked to determine whether they had seen each image previously. This setup allowed the researchers to measure how well participants remembered the images and to correlate their memory performance with the recorded brain activity.

A key aspect of the study was the focus on ripple events in the brain. These ripples, recorded in the hippocampus, are brief but significant bursts of neural activity believed to play a role in reinforcing memories shortly after they are formed. The researchers specifically looked at ripple events occurring immediately after participants viewed each image, a period they referred to as the post-encoding phase. By analyzing these ripples, they aimed to determine whether their frequency and timing could predict how well an image would be remembered later.

As expected, participants were better at remembering emotionally charged images compared to neutral ones. Importantly, the researchers also found that this enhanced memory was closely linked to ripple events in the brain. After participants viewed an emotional image, there was increased activity in the amygdala, which seemed to trigger more frequent ripple events in the hippocampus.

“I was surprised to observe ripples occurring in the hippocampus while awake, as they have been predominantly reported during sleep in animal models,” Zhang told PsyPost.

These ripples were more common following emotional images, and their presence was predictive of how well the participant would remember the image later. In other words, the more ripples that occurred after seeing an emotional image, the more likely the participant was to recall it accurately.

Additionally, the timing of these ripple events was crucial. The researchers found that ripples occurring immediately after viewing the image (during the post-encoding period) were particularly important for strengthening the memory.

The researchers also observed that the activity in the amygdala and hippocampus during these ripples was coordinated, with the amygdala’s activity slightly preceding that of the hippocampus. This coordination was more pronounced for emotional images, suggesting a close collaboration between these two brain regions in enhancing the storage of emotional memories.

“We discovered that emotional experiences lead to increased reactivation in the amygdala, which then triggers more ripple events in the hippocampus, replaying the memory and enhancing it,” Zhang explained. “This study not only uncovers a new neurobiological mechanism explaining why emotional memories are so unforgettable but also offers potential therapeutic approaches. It suggests that enhancing memory might be possible by stimulating hippocampal ripples, and conversely, disrupting these ripples could help in treating PTSD by weakening unwanted emotional memories.”

The study, “Awake ripples enhance emotional memory encoding in the human brain,” was authored by Haoxin Zhang, Ivan Skelin, Shiting Ma, Michelle Paff, Lilit Mnatsakanyan, Michael A. Yassa, Robert T. Knight, and Jack J. Lin.

RELATED

Futuristic low-poly illustration of a human brain with vibrant lighting and geometric background.
Business

Can entrepreneurship be taught? Here’s the neuroscience

January 8, 2026
Scientists shed light on molecular switch that protects brain against Parkinson’s disease
Mental Health

Restoring cellular energy transfer heals nerve damage in mice

January 8, 2026
This specialized cognitive training triggers neurobiological changes and lowers cortisol
Anxiety

This specialized cognitive training triggers neurobiological changes and lowers cortisol

January 8, 2026
Scientists find eating refined foods for just three days can impair memory in the aging brain
Cognitive Science

Scientists find eating refined foods for just three days can impair memory in the aging brain

January 8, 2026
Scientists link dyslexia risk genes to brain differences in motor, visual, and language areas
Neuroimaging

How genetically modified stem cells could repair the brain after a stroke

January 7, 2026
Scientists identify a fat-derived hormone that drives the mood benefits of exercise
Artificial Intelligence

Conversational AI can increase false memory formation by injecting slight misinformation in conversations

January 7, 2026
Language learning rates in autistic children decline exponentially after age two
Early Life Adversity and Childhood Maltreatment

Early life adversity may fundamentally rewire global brain dynamics

January 6, 2026
What we know about a person changes how our brain processes their face
Cognitive Science

Fascinating new neuroscience model predicts intelligence by mapping the brain’s internal clocks

January 5, 2026

PsyPost Merch

STAY CONNECTED

LATEST

Can entrepreneurship be taught? Here’s the neuroscience

What a teen’s eye movements reveal about their future anxiety risk

Sudden drop in fentanyl overdose deaths linked to Biden-era global supply shock

The psychology behind the deceptive power of AI-generated images on Facebook

Restoring cellular energy transfer heals nerve damage in mice

This specialized cognitive training triggers neurobiological changes and lowers cortisol

Scientists find eating refined foods for just three days can impair memory in the aging brain

How genetically modified stem cells could repair the brain after a stroke

RSS Psychology of Selling

  • New study reveals why some powerful leaders admit mistakes while others double down
  • Study reveals the cycle of guilt and sadness that follows a FOMO impulse buy
  • Why good looks aren’t enough for virtual influencers
  • Eye-tracking data shows how nostalgic stories unlock brand memory
  • How spotting digitally altered ads on social media affects brand sentiment
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy