Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

‘Brain training’ may boost working memory, but not intelligence

by Association for Psychological Science
October 9, 2013
in Cognitive Science
Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

Human brainBrain training games, apps, and websites are popular and it’s not hard to see why — who wouldn’t want to give their mental abilities a boost? New research suggests that brain training programs might strengthen your ability to hold information in mind, but they won’t bring any benefits to the kind of intelligence that helps you reason and solve problems.

The findings are published in Psychological Science, a journal of the Association for Psychological Science.

“It is hard to spend any time on the web and not see an ad for a website that promises to train your brain, fix your attention, and increase your IQ,” says psychological scientist and lead researcher Randall Engle of Georgia Institute of Technology. “These claims are particularly attractive to parents of children who are struggling in school.”

According to Engle, the claims are based on evidence that shows a strong correlation between working memory capacity (WMC) and general fluid intelligence. Working memory capacity refers to our ability to keep information either in mind or quickly retrievable, particularly in the presence of distraction. General fluid intelligence is the ability to infer relationships, do complex reasoning, and solve novel problems.

The correlation between WMC and fluid intelligence has led some to surmise that increasing WMC should lead to an increase in both fluid intelligence, but “this assumes that the two constructs are the same thing, or that WMC is the basis for fluid intelligence,” Engle notes.

To better understand the relationship between these two aspects of cognition, Engle and colleagues had 55 undergraduate students complete 20 days of training on certain cognitive tasks. The students were paid extra for improving their performance each day to ensure that they were engaged in the training. Students in the two experimental conditions trained on either complex span tasks, which have been consistently shown to be good measures of WMC, or simple span tasks. With the simple span tasks, the students were asked to recall items in the order they were presented; for complex span tasks, the students had to remember items while performing another task in between item presentations. A control group trained on a visual search task that, like the other tasks, became progressively harder each day.

The researchers administered a battery of tests before and after training to gauge improvement and transfer of learning, including a variety of WMC measures and three measures of fluid intelligence.

The results were clear: Only students who trained on complex span tasks showed transfer to other WMC tasks. None of the groups showed any training benefit on measures of fluid intelligence.

“For over 100 years, psychologists have argued that general memory ability cannot be improved, that there is little or no generalization of ‘trained’ tasks to ‘untrained’ tasks,” says Tyler Harrison, graduate student and lead author of the paper. “So we were surprised to see evidence that new and untrained measures of working memory capacity may be improved with training on complex span tasks.”

The results suggest that the students improved in their ability to update and maintain information on multiple tasks as they switched between them, which could have important implications for real-world multitasking:

“This work affects nearly everyone living in the complex modern world,” says Harrison, “but it particularly affects individuals that find themselves trying to do multiple tasks or rapidly switching between complex tasks, such as driving and talking on a cell phone, alternating between conversations with two different people, or cooking dinner and dealing with a crying child.”

Despite the potential boost for multitasking, the benefits of training didn’t transfer to fluid intelligence. Engle points out that just because WMC and fluid intelligence are highly correlated doesn’t mean that they are the same:

“Height and weight in human beings are also strongly correlated but few reasonable people would assume that height and weight are the same variable,” explains Engle. “If they were, gaining weight would make you taller and losing weight would make you shorter — those of us who gain and lose weight periodically can attest to the fact that that is not true.”

The researchers plan to continue this research to better understand how training specific aspects of cognition can lead to positive transfer to other tasks, both in the lab and in the real world.

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Schoolchildren in classrooms where trees can be seen are less prone to aggression, defiance, and rule-breaking
Cognitive Science

Critical thinking and academic achievement reinforce each other over time, study finds

June 24, 2025

A new study has found that critical thinking and academic achievement build on each other over time in elementary school students, highlighting the importance of integrating thinking skills into classroom learning to support long-term educational growth.

Read moreDetails
The fading affect bias impacts most memories — but election-related memories are surprisingly resilient
Memory

Scientists shed light on how forgiveness does and doesn’t reshape memories

June 20, 2025

A new study suggests that forgiving someone does not make us forget what they did—but it does change how we feel about it. People who forgave recalled past wrongs with just as much detail, but with less emotional pain.

Read moreDetails
Tree-covered neighborhoods linked to lower ADHD risk in children
Cognitive Science

Scientists demonstrate superior cognitive benefits of outdoor vs indoor physical activity

June 18, 2025

A new study suggests that where kids exercise matters: children who played basketball outside showed sharper thinking and faster reaction times than when playing indoors, hinting at a powerful brain-boosting synergy between physical activity and nature.

Read moreDetails
Scientists uncover biological pathway that could revolutionize anxiety treatment
Cognitive Science

Different parts of the same neuron learn in different ways, study finds

June 16, 2025

Researchers have discovered that apical and basal dendrites of the same neuron use different strategies to learn, suggesting neurons adapt more flexibly than previously thought. The findings help explain how the brain fine-tunes its wiring during learning.

Read moreDetails
Poor sleep may shrink brain regions vulnerable to Alzheimer’s disease, study suggests
Memory

Neuroscientists discover biological mechanism that helps the brain ignore irrelevant information

June 14, 2025

New research suggests the brain uses a learning rule at inhibitory synapses to block out distractions during memory replay. This process enables the hippocampus to prioritize useful patterns over random noise, helping build more generalizable and reliable memories.

Read moreDetails
Brain boost from pecans? New study finds short-term cognitive benefits
Cognitive Science

Brain boost from pecans? New study finds short-term cognitive benefits

June 12, 2025

A new study published in Nutritional Neuroscience found that a pecan-enriched shake improved memory and attention in healthy young adults. Participants performed better on 8 of 23 cognitive tests after consuming pecans compared to a calorie-matched shake.

Read moreDetails
Democrats dislike Republicans more than Republicans dislike Democrats, studies find
Cognitive Science

New neuroscience study reveals sex-specific brain responses to threat

June 11, 2025

A new study shows that male and female mice engage distinct brain circuits when responding to threat, challenging the assumption that similar behavior reflects identical brain function. The findings highlight the need for sex-inclusive neuroscience research.

Read moreDetails
HIIT workouts outshine others in boosting memory and brain health, new study finds
Cognitive Science

Mega-study shows exercise boosts cognitive functioning across all ages and health conditions

June 11, 2025

From children to older adults, exercise enhances brainpower. A sweeping new analysis shows that physical activity improves general cognition, memory, and executive function in both healthy and clinical populations, reinforcing its value for mental sharpness at any age.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Maximization style and social media addiction linked to relationship obsessive compulsive disorder

Video games calm the body after stress, even when players feel on edge

Reading fiction fights loneliness and builds a healthier brain

Youth with psychopathic traits at increased risk of dying young, study finds

Critical thinking and academic achievement reinforce each other over time, study finds

Exposure to heavy metals is associated with higher likelihood of ADHD diagnosis

Eye-tracking study shows people fixate longer on female aggressors than male ones

Romantic breakups follow a two-stage decline that begins years before the split, study finds

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy