Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health Dementia Alzheimer's Disease

Cannabidiol shows promise for treating Alzheimer’s in mice by targeting brain hyperactivity

by Eric W. Dolan
May 26, 2025
in Alzheimer's Disease, Cannabis
[Adobe Stock]

[Adobe Stock]

Share on TwitterShare on Facebook

A new study published in Molecular Psychiatry provides preliminary evidence that cannabidiol, a compound derived from cannabis, may reduce cognitive decline and brain pathology in a mouse model of Alzheimer’s disease. Researchers found that chronic administration of cannabidiol improved memory performance and reduced the accumulation of amyloid-beta plaques—one of the hallmarks of Alzheimer’s. These benefits were linked to cannabidiol’s ability to regulate overactive brain cells in a key region involved in memory.

Cannabidiol, or CBD, is one of the main components of cannabis. Unlike tetrahydrocannabinol (THC), it does not produce a high and is generally considered safe. In recent years, researchers have been exploring its potential therapeutic effects on various neurological and psychiatric conditions, including epilepsy, anxiety, and neurodegenerative diseases such as Alzheimer’s. One area of interest is whether CBD can calm excessive brain activity, a problem observed in people and animals with Alzheimer’s disease.

The research team, based in China, conducted a series of experiments to test whether CBD could reduce symptoms of Alzheimer’s in genetically modified mice known as 5×FAD mice. These animals are widely used in research because they develop Alzheimer’s-like symptoms, including memory loss and the buildup of toxic amyloid-beta plaques in the brain. The researchers administered a low daily dose of CBD to these mice for just over a month and then assessed their behavior, brain activity, and the extent of brain pathology.

To evaluate memory function, the mice completed a series of behavioral tests. In a novel object recognition test, CBD-treated mice spent more time exploring new objects, indicating improved recognition memory. In two separate spatial memory tasks—the Morris water maze and the Barnes maze—CBD-treated mice learned the location of a hidden platform more quickly and remembered it better than untreated mice. These improvements in memory occurred without changes in general motor function or anxiety-like behavior, suggesting that CBD had specific effects on cognition.

Beyond behavior, the researchers looked directly at the brains of the mice. They found that CBD treatment led to a reduction in amyloid-beta plaques, particularly in the dentate gyrus, a part of the hippocampus that plays an important role in learning and memory. The reduction was most noticeable in smaller plaques, which are typically newly formed. This suggests that CBD may help slow the formation of new plaques rather than clear out existing ones. Importantly, the extent of plaque reduction in the dentate gyrus was strongly associated with the improvements in memory, highlighting the relevance of this brain region in both pathology and treatment response.

The study also investigated how CBD might achieve these effects at the molecular level. The researchers focused on glycine receptors, which help regulate electrical activity in the brain by dampening excessive neuronal firing. These receptors are particularly abundant in the dentate gyrus. Previous studies have shown that CBD can enhance the activity of glycine receptors by binding to a specific site on the receptor protein.

Using genetic techniques, the researchers disrupted glycine receptor function in some mice to test whether these receptors were necessary for CBD’s effects. In mice where glycine receptors in the dentate gyrus were either knocked down or altered to prevent CBD binding, the beneficial effects of CBD disappeared. These mice showed no improvements in memory and no reduction in amyloid-beta plaques, strongly suggesting that glycine receptors are a key mechanism behind CBD’s therapeutic action.

To explore how this might affect brain function, the researchers used several techniques to measure neuronal activity. In untreated Alzheimer’s model mice, neurons in the dentate gyrus were overly active, firing more rapidly than normal. Chronic CBD treatment reduced this hyperactivity, bringing the cells’ behavior closer to normal levels. This calming effect was not observed in mice with disabled glycine receptors, further reinforcing their central role.

The team also recorded brain activity in living mice by implanting electrodes and using calcium imaging, a technique that tracks real-time cellular activity. They found that after CBD infusion, many neurons in the dentate gyrus showed a marked drop in activity. In contrast, mice with a mutated version of the glycine receptor that could not interact with CBD showed little to no change.

While these findings are promising, there are several limitations to the study. First, the research was conducted in mice, not humans. Although animal models are useful for understanding disease mechanisms and testing treatments, they do not capture all aspects of human Alzheimer’s. Second, the study only used male mice, and future research will need to explore whether the same results hold true in females. Third, while the study identified glycine receptors as an important target for CBD, the compound interacts with many other receptors and systems in the brain. More work is needed to understand how these other pathways may contribute to its effects.

Despite these limitations, the findings add to a growing body of evidence suggesting that CBD has potential as a treatment for Alzheimer’s disease. By reducing abnormal brain activity and slowing the formation of harmful plaques, CBD may help preserve memory and cognitive function. The study also highlights the importance of glycine receptors in regulating brain activity and offers a new avenue for therapeutic intervention.

The study, “Cannabidiol ameliorates cognitive decline in 5×FAD mouse model of Alzheimer’s disease through potentiating the function of extrasynaptic glycine receptors,” was authored by Jin Jin, Chonglei Fu, Jing Xia, Heyi Luo, Xianglian Wang, Si Chen, Huanhuan Mao, Kai Yuan, Lin Lu, Wei Xiong, and Guichang Zou.

RELATED

Psychology researchers identify a “burnout to extremism” pipeline
Caffeine

The unexpected interaction between CBD and THC in caffeinated beverages

January 12, 2026
Brain circuits tied to depression’s “negativity effect” uncovered
Alzheimer's Disease

Sex differences in Alzheimer’s linked to protein that blocks brain cell growth

January 10, 2026
Slow breathing during meditation reduces levels of Alzheimer’s-related proteins in the blood
Alzheimer's Disease

Slow breathing during meditation reduces levels of Alzheimer’s-related proteins in the blood

January 4, 2026
Even a little exercise could significantly lower dementia risk
Alzheimer's Disease

New cellular map reveals how exercise protects the brain from Alzheimer’s disease

January 3, 2026
Cannabidiol shows promise for treating Alzheimer’s in mice by targeting brain hyperactivity
Addiction

Cannabidiol may prevent sensitization to cocaine and caffeine by influencing brain structure genes

December 31, 2025
Scientists link common “forever chemical” to male-specific developmental abnormalities
Alzheimer's Disease

Scientists achieve full neurological recovery from Alzheimer’s in mice by restoring metabolic balance

December 26, 2025
Hemp-derived cannabigerol shows promise in reducing anxiety — and maybe even improving memory
Alzheimer's Disease

Microdosing cannabis: a new hope for Alzheimer’s patients?

December 22, 2025
Prenatal cannabis exposure linked to early childhood behavioral and cognitive challenges
Alcohol

Smoking cannabis reduces alcohol consumption in heavy drinkers, study finds

December 21, 2025

PsyPost Merch

STAY CONNECTED

LATEST

The psychological reason news reports single out women and children

Playing video games for this long each week is linked to worse diet and sleep

Men who think they are attractive are more likely to infer sexual interest from women

Global safety data suggests severe physical complications from psychedelics are rare

Stress-related brain activity links depression and anxiety to higher heart disease risk

Scientists show humans can “catch” fear from a breathing robot

Remaining single in your twenties is linked to lower life satisfaction

Neuroscientists find evidence meditation changes how fluid moves in the brain

RSS Psychology of Selling

  • Researchers track how online shopping is related to stress
  • New study reveals why some powerful leaders admit mistakes while others double down
  • Study reveals the cycle of guilt and sadness that follows a FOMO impulse buy
  • Why good looks aren’t enough for virtual influencers
  • Eye-tracking data shows how nostalgic stories unlock brand memory
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy