Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Uncategorized

Disorder of neuronal circuits in autism is reversible

by University of Basel
September 16, 2012
in Uncategorized
Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

Neuron by Stephane BaudouinPeople with autism suffer from a pervasive developmental disorder of the brain that becomes evident in early childhood.

Peter Scheiffele and Kaspar Vogt, Professors at the Biozentrum of the University of Basel, have identified a specific dysfunction in neuronal circuits that is caused by autism. In the respected journal Science, the scientists also report about their success in reversing these neuronal changes. These findings are an important step in drug development for the treatment for autism.

According to current estimates, about one percent of all children develop an autistic spectrum disorder. Individuals with autism may exhibit impaired social behavior, rigid patterns of behavior and limited speech development. Autism is a hereditary developmental disorder of the brain. A central risk factor for the development of autism are numerous mutations in over 300 genes that have been identified, including the gene neuroligin-3, which is involved in the formation of synapses, the contact junction between nerve cells.

Loss of neuroligin-3 interferes with neuronal signal transmission

The consequences of neuroligin-3 loss can be studied in animal models. Mice lacking the gene for neuroligin-3 develop behavioral patterns reflecting important aspects observed in autism. In collaboration with Roche the research groups from the Biozentrum at the University of Basel have now identified a defect in synaptic signal transmission that interferes with the function and plasticity of the neuronal circuits. These negative effects are associated with increased production of a specific neuronal glutamate receptor, which modulates the signal transmission between neurons. An excess of these receptors inhibits the adaptation of the synaptic signal transmission during the learning process, thus disrupting the development and function of the brain in the long term.

Of major importance is the finding that the impaired development of the neuronal circuit in the brain is reversible.  When the scientists reactivated the production of neuroligin-3 in the mice, the nerve cells scaled down the production of the glutamate receptors to a normal level and the structural defects in the brain typical for autism disappeared. Hence, these glutamate receptors could be a suitable pharmacological target in order to stop the developmental disorder autism or even reverse it.

Vision for the future: Medication for autism

Autism currently cannot be cured.  At present, only the symptoms of the disorder can be alleviated through behavioral therapy and other treatment. A new approach to its treatment, however, has been uncovered through the results of this study. In one of the European Union supported projects, EU-AIMS, the research groups from the Biozentrum are working in collaboration with Roche and other partners in industry on applying glutamate receptor antagonists for the treatment of autism and hope, that in the future, this disorder can be treated successfully in both children and adults.

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

Evolutionary Psychology

The link between our obsession with Facebook and our shrinking brain

March 6, 2016

Our obsession with social websites like Twitter and Facebook is the side-effect of an evolutionary process that caused our brains to shrink, according to Professor Bruce Hood. "As people settled down into fixed communities for the first time, with the connection to a single place and the relative peace and...

Read moreDetails
Uncategorized

UCLA first to map autism-risk genes by function

November 21, 2013

Pity the poor autism researcher. Recent studies have linked hundreds of gene mutations scattered throughout the brain to increased autism risk. Where do you start?

Read moreDetails
Uncategorized

Are probiotics a promising treatment strategy for depression?

November 16, 2013

Probiotics are not new, but their status as a nutritional buzzword is. Most folks have now heard and seen the term countless times in commercials and advertisements, as yogurt, dietary supplement, natural food product, and even cosmetic companies promote their probiotic-containing products.

Read moreDetails
Uncategorized

Slacktivism: ‘Liking’ on Facebook may mean less giving

November 9, 2013

Would-be donors skip giving when offered the chance to show public support for charities in social media, a new study from the University of British Columbia's Sauder School of Business finds.

Read moreDetails
Uncategorized

Educational video games can boost motivation to learn

November 7, 2013

Math video games can enhance students' motivation to learn, but it may depend on how students play, researchers at New York University and the City University of New York have found in a study of middle-schoolers.

Read moreDetails
Uncategorized

How video gaming can be beneficial for the brain

October 30, 2013

Video gaming causes increases in the brain regions responsible for spatial orientation, memory formation and strategic planning as well as fine motor skills.

Read moreDetails
Uncategorized

Dialectical behavior therapy is a new method for overcoming post-traumatic stress disorder

October 19, 2013

Dialectical behavior therapy , a psychotherapeutic strategy that has been used in borderline personality disorder, may also be useful in the setting of post-traumatic stress disorder (PTSD).

Read moreDetails
Uncategorized

Mice modeling schizophrenia show key brain network in overdrive

October 19, 2013

Working with mice genetically engineered to display symptoms of schizophrenia, neuroscientists at the RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory at MIT have uncovered a faulty brain mechanism that may underlie schizophrenia and other psychiatric disorders in humans.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Creativity in autism may stem from co-occurring ADHD, not autism itself

Cannabis oil might help with drug-resistant epilepsy, study suggests

New brain stimulation method shows promise for treating mood, anxiety, and trauma disorders

Peppermint tea boosts memory and attention—but why?

Psychedelic compound blurs boundary between self and others in the brain, study finds

Could creatine slow cognitive decline? Mouse study reveals promising effects on brain aging

ChatGPT and “cognitive debt”: New study suggests AI might be hurting your brain’s ability to think

Frequent dreams and nightmares surged worldwide during the COVID-19 pandemic

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy