Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Psychopharmacology Psychedelic Drugs Ayahuasca

DMT, active component in ayahuasca, aids in the growth of new neurons

by Christian Rigg
July 12, 2021
in Ayahuasca, Cognitive Science, Psychedelic Drugs
(Photo credit: Adobe Stock)

(Photo credit: Adobe Stock)

Share on TwitterShare on Facebook

In addition to being found naturally in animal tissues, including the human brain, N,N-dimethyltryptamine (DMT) is the primary hallucinogenic compound found in the psychedelic brew known as ayahuasca. Used for both ritual and medicinal purposes in traditional South American cultures, it has garnered much attention lately for its therapeutic roles vis-à-vis depression and anxiety.

Despite being naturally-occurring and benefiting from a centuries’ long tradition in diverse cultures, its effects on the brain are still poorly understood. Recently, however, it has been shown to play an important role in both in vitro and in vivo neurogenesis mouse populations, with some interesting associated behavioral outcomes. The study, out of Madrid, was published in Translational Psychiatry.

Neurogenesis refers to the process of creating new neurons in the brain, which occurs primarily in the subventricular zone (the area separating brain tissue from the cerebrospinal fluid-filled lateral ventricles) and the hippocampus. Neurogenesis is highly complex and not well understood, which makes the findings of the present study all the more interesting.

The authors looked at the effects of DMT on neurogenesis both in vitro (meaning in a laboratory condition, such as a petri dish or test tube) and in vivo, meaning in live animals—in this case, laboratory mice.

The results of the study demonstrate widespread activation of a variety of neurogenic mechanisms in the presence of DMT. For example, DMT was found to reduce “stemness” in neurospheres (free-floating neurons in a laboratory culture). Stemness refers to that unique property of stem cells to morph into any cell in the body. In other words, DMT may push undifferentiated neurons to develop into mature forms.

This was confirmed again in a second test, where DMT was found to promote differentiation of neurons into three main neural cellular types: neurons, astroglia and oligodendrocytes. This means that DMT is not only involved in straight-forward neurogenesis, but the proliferation of glial cells, which play diverse and essential supporting roles in the brain.

Hippocampus-derived neurospheres that were treated with DMT were also found to increase significantly in size and number, meaning that treatment was directly related to the proliferation of new cells.

In vivo, DMT was additionally found to facilitate the migration of new neurons, a crucial step to enabling them to fulfil their new roles in the brain.

Google News Preferences Add PsyPost to your preferred sources

These results all point to an important effect of DMT on neurogenesis, operating at multiple levels and facilitating the proliferation, migration, and differentiation of new neurons. Mice treated with DMT also performed better in memory tests, which seems to fit with the new production of neurons in the hippocampus (widely recognized as the seat of learning and memory in animal brains).

“This capacity to modulate brain plasticity suggests that it has great therapeutic potential for a wide range of psychiatric and neurological disorders, including neurodegenerative diseases,” explained José Ángel Morales, a researcher in the UCM and CIBERNED Department of Cellular Biology.

Beyond pure scientific interest, understanding neurogenesis and, eventually, even being able to actively promote it, has a variety of therapeutic implications. Many neurodegenerative diseases like Parkinson’s and Alzheimer’s disease have been linked to impairments in neurogenesis, for example, while the ability to induce neurogenesis at will could eventually be used to repair damage from lesions and strokes.

“The challenge is to activate our dormant capacity to form neurons and thus replace the neurons that die as a result of the disease. This study shows that DMT is capable of activating neural stem cells and forming new neurons,” Morales said.

Such remedies are still a long way off, but studies like the present lay the groundwork and are essential to our understanding of the brain.

The study, “N,N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo“, was authored by Jose A. Morales-Garcia, Javier Calleja-Conde, Jose A. Lopez-Moreno, Sandra Alonso-Gil, Marina Sanz-SanCristobal, Jordi Riba, and Ana Perez-Castillo.

RELATED

Stanford scientist discovers that AI has developed an uncanny human-like ability
Artificial Intelligence

The scientist who predicted AI psychosis has issued another dire warning

February 7, 2026
Lifetime ecstasy use is associated with lower odds of impairments in social functioning, study finds
MDMA

Recreational ecstasy use is linked to lasting memory impairments

February 6, 2026
Sorting Hat research: What does your Hogwarts house say about your psychological makeup?
Cognitive Science

Scientists just mapped the brain architecture that underlies human intelligence

February 6, 2026
A new experiment reveals an unexpected shift in how pregnant women handle intimidation
Cognitive Science

A high-sugar breakfast may trigger a “rest and digest” state that dampens cognitive focus

February 5, 2026
One specific reason for having sex is associated with higher stress levels the next day
Psilocybin

Psilocybin impacts immunity and behavior differently depending on diet and exercise context

February 4, 2026
One specific reason for having sex is associated with higher stress levels the next day
Cognitive Science

A high-salt diet triggers inflammation and memory loss by altering the microbiome

February 4, 2026
Data from 560,000 students reveals a disturbing mental health shift after 2016
Cognitive Science

The neural path from genes to intelligence looks different depending on your age

February 2, 2026
Psychology researchers identify a “burnout to extremism” pipeline
Cognitive Science

Speaking multiple languages appears to keep the brain younger for longer

February 1, 2026

PsyPost Merch

STAY CONNECTED

LATEST

Attachment anxiety shapes how emotions interfere with self-control

Study reports associations between infants’ head growth patterns and risk of autism

Blood test might detect Parkinson’s disease years before physical symptoms appear

A common enzyme linked to diabetes may offer a new path for treating Alzheimer’s

Narcissistic students perceive student-professor flirting as less morally troubling

Evolutionary psychology’s “macho” face ratio theory has a major flaw

Reduction in PTSD symptoms linked to better cognitive performance in new study of veterans

Scientists reveal the alien logic of AI: hyper-rational but stumped by simple concepts

RSS Psychology of Selling

  • Sales agents often stay for autonomy rather than financial rewards
  • The economics of emotion: Reassessing the link between happiness and spending
  • Surprising link found between greed and poor work results among salespeople
  • Intrinsic motivation drives sales performance better than financial rewards
  • New research links faking emotions to higher turnover in B2B sales
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy