Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Echolocation: Bats do it, dolphins do it — now humans can do it, too

by University of California at Berkeley
July 7, 2015
in Cognitive Science
Photo credit: Tim Ellis

Photo credit: Tim Ellis

Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

University of California, Berkeley, physicists have used graphene to build lightweight ultrasonic loudspeakers and microphones, enabling people to mimic bats or dolphins’ ability to use sound to communicate and gauge the distance and speed of objects around them.

More practically, the wireless ultrasound devices complement standard radio transmission using electromagnetic waves in areas where radio is impractical, such as underwater, but with far more fidelity than current ultrasound or sonar devices. They can also be used to communicate through objects, such as steel, that electromagnetic waves can’t penetrate.

“Sea mammals and bats use high-frequency sound for echolocation and communication, but humans just haven’t fully exploited that before, in my opinion, because the technology has not been there,” said UC Berkeley physicist Alex Zettl. “Until now, we have not had good wideband ultrasound transmitters or receivers. These new devices are a technology opportunity.”

Speakers and microphones both use diaphragms, typically made of paper or plastic, that vibrate to produce or detect sound, respectively. The diaphragms in the new devices are graphene sheets a mere one atom thick that have the right combination of stiffness, strength and light weight to respond to frequencies ranging from subsonic (below 20 hertz) to ultrasonic (above 20 kilohertz). Humans can hear from 20 hertz up to 20,000 hertz, whereas bats hear only in the kilohertz range, from 9 to 200 kilohertz. The grapheme loudspeakers and microphones operate from well below 20 hertz to over 500 kilohertz.

Graphene consists of carbon atoms laid out in a hexagonal, chicken-wire arrangement, which creates a tough, lightweight sheet with unique electronic properties that have excited the physics world for the past 20 or more years.

“There’s a lot of talk about using graphene in electronics and small nanoscale devices, but they’re all a ways away,” said Zettl, who is a senior scientist at Lawrence Berkeley National Laboratory and a member of the Kavli Energy NanoSciences Institute, operated jointly by UC Berkeley and Berkeley Lab. “The microphone and loudspeaker are some of the closest devices to commercial viability, because we’ve worked out how to make the graphene and mount it, and it’s easy to scale up.”

Zettl, UC Berkeley postdoctoral fellow Qin Zhou and colleagues describe their graphene microphone and ultrasonic radio in a paper appearing online this week in the Proceedings of the National Academy of Sciences.

Radios and rangefinders

Two years ago, Zhou built loudspeakers using a sheet of graphene for the diaphragm, and since then has been developing the electronic circuitry to build a microphone with a similar graphene diaphragm.

One big advantage of graphene is that the atom-thick sheet is so lightweight that it responds well to the different frequencies of an electronic pulse, unlike today’s piezoelectric microphones and speakers. This comes in handy when using ultrasonic transmitters and receivers to transmit large amounts of information through many different frequency channels simultaneously, or to measure distance, as in sonar applications.

“Because our membrane is so light, it has an extremely wide frequency response and is able to generate sharp pulses and measure distance much more accurately than traditional methods,” Zhou said.

Graphene membranes are also more efficient, converting over 99 percent of the energy driving the device into sound, whereas today’s conventional loudspeakers and headphones convert only 8 percent into sound. Zettl anticipates that in the future, communications devices like cellphones will utilize not only electromagnetic waves – radio – but also acoustic or ultrasonic sound, which can be highly directional and long-range.

“Graphene is a magical material; it hits all the sweet spots for a communications device,” he said.

Bat chirps

When Zhou told his wife, Jinglin Zheng, about the ultrasound microphone, she suggested he try to capture the sound of bats chirping at frequencies too high for humans to hear. So they hauled the microphone to a park in Livermore and turned it on. When they slowed down the recording to one-tenth normal speed, converting the high frequencies to an audio range humans can hear, they were amazed at the quality and fidelity of the bat vocalizations.

“This is lightweight enough to mount on a bat and record what the bat can hear,” Zhou said.

Bat expert Michael Yartsev, a newly hired UC Berkeley assistant professor of bioengineering and member of the Helen Wills Neuroscience Institute, said, “These new microphones will be incredibly valuable for studying auditory signals at high frequencies, such as the ones used by bats. The use of graphene allows the authors to obtain very flat frequency responses in a wide range of frequencies, including ultrasound, and will permit a detailed study of the auditory pulses that are used by bats.”

Zettl noted that audiophiles would also appreciate the graphene loudspeakers and headphones, which have a flat response across the entire audible frequency range.

“A number of years ago, this device would have been darn near impossible to build because of the difficulty of making free-standing graphene sheets,” Zettl said. “But over the past decade the graphene community has come together to develop techniques to grow, transport and mount graphene, so building a device like this is now very straightforward; the design is simple.”

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

These common sounds can impair your learning, according to new psychology research
Cognitive Science

These common sounds can impair your learning, according to new psychology research

July 4, 2025

Your brain’s ancient defense system might be sabotaging your test scores. New research suggests our "behavioral immune system," which makes us subconsciously alert to signs of illness, can be triggered by coughs and sniffles.

Read moreDetails
From fireflies to brain cells: Unraveling the complex web of synchrony in networks
Addiction

Understanding “neuronal ensembles” could revolutionize addiction treatment

July 3, 2025

The same brain system that rewards you for a delicious meal is hijacked by drugs like fentanyl. A behavioral neuroscientist explains how understanding the specific memories behind these rewards is the key to treating addiction without harming our essential survival instincts.

Read moreDetails
Scientists just uncovered a surprising illusion in how we remember time
Memory

Scientists just uncovered a surprising illusion in how we remember time

July 3, 2025

Our perception of time is more fragile than we think. Scientists have uncovered a powerful illusion where repeated exposure to information makes us misremember it as happening much further in the past, significantly distorting our mental timelines.

Read moreDetails
Peppermint tea boosts memory and attention—but why?
Cognitive Science

Peppermint tea boosts memory and attention—but why?

July 2, 2025

Can a cup of peppermint tea sharpen your mind? A new study suggests it can—but not in the way scientists expected. Improved memory and attention followed the tea, but increased brain blood flow wasn't the reason why.

Read moreDetails
Scientists reveal ChatGPT’s left-wing bias — and how to “jailbreak” it
Artificial Intelligence

ChatGPT and “cognitive debt”: New study suggests AI might be hurting your brain’s ability to think

July 1, 2025

Researchers at MIT investigated how writing with ChatGPT affects brain activity and recall. Their findings indicate that reliance on AI may lead to reduced mental engagement, prompting concerns about cognitive “offloading” and its implications for education.

Read moreDetails
New psychology study sheds light on mysterious “feelings of presence” during isolation
Cognitive Science

Vagus nerve signals influence food intake more in higher socio-economic groups

July 1, 2025

Researchers have found that internal physiological cues—like signals from the vagus nerve—play a stronger role in guiding eating behavior among wealthier individuals, offering new insight into why socio-economic status is linked to differences in diet and health.

Read moreDetails
Researchers identify neural mechanism behind memory prioritization
Memory

Researchers identify neural mechanism behind memory prioritization

June 30, 2025

A new brain imaging study shows that when people try to remember multiple things, their brains give more precise attention to the most important item. The frontal cortex helps allocate memory resources, boosting accuracy for high-priority information.

Read moreDetails
Scientists show how you’re unknowingly sealing yourself in an information bubble
Cognitive Science

Scientists show how you’re unknowingly sealing yourself in an information bubble

June 29, 2025

Scientists have found that belief polarization doesn’t always come from misinformation or social media bubbles. Instead, it often begins with a simple search. Our choice of words—and the algorithm’s response—can subtly seal us inside our own informational comfort zones.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Othello syndrome: Woman’s rare stroke leads to psychotic delusions of infidelity

How to protect your mental health from a passive-aggressive narcissist

Dark personality traits linked to generative AI use among art students

Scientists are uncovering more and more unsettling facts about our politics

People with depression face significantly greater social and health-related challenges

Stress disrupts gut and brain barriers by reducing key microbial metabolites, study finds

New research reveals hidden biases in AI’s moral advice

7 subtle signs you are being love bombed—and how to slow things down before you get hurt

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy