Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

From fireflies to brain cells: Unraveling the complex web of synchrony in networks

by Joseph Lizier
September 13, 2023
in Cognitive Science, Neuroimaging
[Adobe Stock]

[Adobe Stock]

Share on TwitterShare on Facebook
Don't miss out! Follow PsyPost on Bluesky!

Getting in sync can be exhilarating when you’re dancing in rhythm with other people or clapping along in an audience. Fireflies too know the joy of synchronisation, timing their flashes together to create a larger display to attract mates.

Synchronisation is important at a more basic level in our bodies, too. Our heart cells all beat together (at least when things are going well), and synchronised electrical waves can help coordinate brain regions – but too much synchronisation of brain cells is what happens in an epileptic seizure.

Sync most often emerges spontaneously rather than through following the lead of some central timekeeper. How does this happen? What is it about a system that determines whether sync will emerge, and how strong it will be?

In new research published in Proceedings of the National Academy of Sciences, we show how the strength of synchronisation in a network depends on the structure of the connections between its members – whether they be brain cells, fireflies, or groups of dancers.

The science of sync

Scientists originally became interested in sync to understand the inner workings of natural systems. We have also become interested in designing sync as a desired behaviour in human-made systems such as power grids (to keep them in phase).

Mathematicians can analyse sync by treating the individuals in the system as “coupled oscillators”. An oscillator is something that periodically repeats the same pattern of activity, like the sequence of steps in a repetitive dance, and coupled oscillators are ones that can influence each other’s behaviour.

It can be useful to measure whether a system of oscillators can synchronise their actions, and how strong that synchronisation would be. Strength of synchronisation means how well the sync can recover from disturbances.

Take a group dance, for example. A disturbance might be one person starting to get some steps wrong. The person might quickly recover by watching their friends, they might throw their friends off for a few steps before everyone recovers, or in the worst case it might just cause chaos.

Synced systems are strong but hard to unravel

Two factors make it difficult to determine how strong the synchronisation in a set of coupled oscillators could be.

First, it’s rare for a single oscillator to be in charge and telling everyone else what to do. In our dance example, that means there’s neither music nor lead dancers to set the tempo.

And second, usually each oscillator is only connected to a few others in the system. So each dancer can only see and react to a few others, and everyone is taking their cues from a completely different set of dancers.

This is the case in the brain, for example, where there is a complex network structure of connections between different regions.

Real complex systems like this, where there is no central guiding signal and oscillators are connected in a complex network, are very robust to damage and adaptable to change, and can more easily scale to different sizes.

Stronger sync comes from more wandering walks

One drawback of such complicated systems is for scientists, as they are mathematically difficult to come to grips with. However, our new research has made a significant advance on this front.

We have shown how the network structure connecting a set of oscillators controls how well they can synchronise. The quality of sync depends on “walks” on a network, which are sequences of hops between connected oscillators or nodes.

Our maths examines what are called “paired walks”. If you start at one node and take two walks with randomly chosen next hops for a specific number of hops, the two walks might end up at the same node (these are convergent walks) or at different nodes (divergent walks).

We found that the more often paired walks on a network were convergent rather than divergent, the worse the synchronisation on the network would be.

When more paired walks are convergent, disturbances tend to be reinforced.

In our dancing example, one person making the wrong steps might lead some neighbours astray, who may then lead some of their neighbours astray and so on.

These chains of potential disturbances are like walks on the network. When those disturbances propagate through multiple neighbours and then converge on one person, that person is going to be much more likely to copy the out-of-sync moves than if only one of their neighbours was offbeat.

Social networks, power grids and beyond

So networks with many convergent walks are prone to poorer synchronisation. This is good news for the brain avoiding epilepsy, as its highly modular structure brings a high proportion of convergent walks.

We can see this reflected in the echo chamber phenomenon in social media. Tightly coupled subgroups reinforcing their own messages can synchronise themselves well, but may fall far out of step with the wider population.

Our results bring a new understanding to how synchronisation functions in different natural network structures. It opens new opportunities in terms of designing network structures or interventions on networks, either to aid synchronisation (in power grids, say) or to avoid synchronisation (say in the brain).

More widely, it represents a major step forward in our understanding of how the structure of complex networks affects their behaviour and capabilities. The Conversation

 

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

TweetSendScanShareSendPin9ShareShareShareShareShare

RELATED

A surprising body part might provide key insights into schizophrenia risk
Addiction

Neuroscientists shed new light on how heroin disrupts prefrontal brain function

July 11, 2025

After heroin exposure and abstinence, mice showed reduced prefrontal brain activity during social interaction but heightened responses to drug-related cues, suggesting heroin disrupts normal brain function in ways that may contribute to social withdrawal and relapse risk.

Read moreDetails
A common vegetable may counteract brain changes linked to obesity
Mental Health

A common vegetable may counteract brain changes linked to obesity

July 11, 2025

Could a humble vegetable protect the brain from the effects of early-life overfeeding? A new rat study finds that okra improves insulin sensitivity and reduces inflammation in key brain areas linked to appetite and obesity.

Read moreDetails
Scientists find genetic basis for how much people enjoy music
Cognitive Science

Is humor inherited? Twin study suggests the ability to be funny may not run in the family

July 10, 2025

A first-of-its-kind study set out to discover whether being funny is something you inherit. By testing twins on their joke-making skills, researchers found that your sense of humor might have less to do with DNA than you'd think.

Read moreDetails
Hyperarousal peaks in the morning for insomniacs
Neuroimaging

Dysfunction within the sensory processing cortex of the brain is associated with insomnia, study finds

July 9, 2025

New brain imaging research suggests that insomnia is linked to abnormal connectivity in brain regions that process sensory information. These disruptions may play a role in the sleep-wake imbalance that makes it so hard for some people to rest.

Read moreDetails
Even in healthy adults, high blood sugar levels are linked to impaired brain function
Memory

Neuroscientists decode how people juggle multiple items in working memory

July 8, 2025

New neuroscience research shows how the brain decides which memories deserve more attention. By tracking brain activity, scientists found that the frontal cortex helps direct limited memory resources, allowing people to remember high-priority information more precisely than less relevant details.

Read moreDetails
Research suggests people are getting more bored
Neuroimaging

Inside the bored brain: Unlocking the power of the default mode network

July 8, 2025

When you feel bored, a fascinating shift occurs in your brain. Your “default mode network” activates, sparking introspection and imagination. Far from being empty time, boredom is a complex and crucial state that helps your brain recharge, reset, and create.

Read moreDetails
Psychedelic drug DOI activates specific brain neurons to ease anxiety
Depression

Choline imbalance in the brain linked to with cognitive symptoms in young depression patients

July 8, 2025

Researchers have identified metabolic differences in the brains of young adults with depression who also experience cognitive impairment. The study sheds light on how chemical imbalances in key brain regions may contribute to thinking and memory problems in depression.

Read moreDetails
The most popular dementia videos on TikTok tend to have the lowest quality, study find
Addiction

People with short-video addiction show altered brain responses during decision-making

July 8, 2025

People who frequently use short-video apps like TikTok may show reduced loss sensitivity and impulsive decision-making, according to a new neuroimaging study that links addictive use patterns to changes in brain activity during risky choices.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Neuroscientists shed new light on how heroin disrupts prefrontal brain function

New research identifies four distinct health pathways linked to Alzheimer’s disease

A surprising body part might provide key insights into schizophrenia risk

Religious belief linked to lower anxiety and better sleep in Israeli Druze study

A common vegetable may counteract brain changes linked to obesity

Massive psychology study reveals disturbing truths about Machiavellian leaders

Dementia: Your lifetime risk may be far greater than previously thought

Psychopathic tendencies may be associated with specific hormonal patterns

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy