Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Researchers visualize cilia-based networks in the brain

by Max Planck Gesellshaft
July 9, 2016
in Cognitive Science
Photo credit: R. Faubel, H. Sebesse

Photo credit: R. Faubel, H. Sebesse

Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

We have all bumped our heads at some point, and such incidents are usually harmless. This is thanks to fluid-filled chambers in our brain that offset minor knocks and jolts and provide padding for sensitive components of our nervous system. Cerebral fluid, however, has more than just a protective function: It removes cellular waste, supplies our nervous tissue with nutrients, and transports important messenger substances.

How these messenger substances are actually being delivered to their destination in the brain, however, was unclear until now. Göttingen-based Max Planck researchers have now discovered that tiny cilia on the surface of specialized cells could lead the way. Through synchronized beating movements, they create a complex network of dynamic flows that act like conveyor belts transporting molecular “freight”. The results obtained by the scientists suggest that these flows send messenger substances directly to where they are needed.

Millions of cilia on the surface of specialized cells inside our body literally make this a hairy affair. Cilia free our airways of dust, mucus, and pathogens, transport egg cells through the fallopian tubes, and help sperm to move forward. The four chambers in our brain, so-called cerebral ventricles, are also lined with a layer of highly specialized cells covered with bundles of cilia on their surface. Although each one is just a few thousandths of a millimeter in size, hundreds of them beating in unison can generate powerful flows.

Gregor Eichele and Regina Faubel at the Max Planck Institute for Biophysical Chemistry, together with Eberhard Bodenschatz and Christian Westendorf at the Max Planck Institute for Dynamics and Self-Organization, have now succeeded in making the complex network of these flows visible in an isolated cerebral ventricle tissue. For their experiments, the researchers in Göttingen concentrated on the third cerebral ventricle, which is embedded in the hypothalamus. “The hypothalamus is a very important control center, regulating functions like the circulatory system, body temperature, sexual behavior, food intake, and hormonal balance. To our surprise, there is a sophisticated transport system to and from the hypothalamus for distributing messenger substances via cerebral fluid,” explains Gregor Eichele, Head of the Department of Genes and Behavior at the Max Planck Institute for Biophysical Chemistry.

Fluorescent spheres under the microscope

The movement of the fluid, however, cannot be directly observed under a microscope. To visualize the movement, Regina Faubel of Eichele’s Department developed a new experimental approach using isolated cerebral ventricle tissue from the mouse. In a culture dish, the scientist injected the nerve tissue with tiny fluorescent particles that subsequently moved with the culture medium as tracer. She then recorded the path of each particle within the nerve tissue under the microscope. With the aid of a computer program specially developed by her colleague Christian Westendorf, the researchers finally combined the extensive data to create a picture that could be scientifically analyzed.

“In these images, we can see a complex network of fluid paths inside the cerebral ventricle. However, in contrast to the blood which flows through our blood vessels, these paths are not confined by walls. The exciting question for us was therefore: Is the flow pattern created solely by the synchronized beating of the cilia?” reports Regina Faubel, first author of the study. The researchers then filmed the cilia live in action, thus determining the direction of the beating as well as the resulting flows. “Our experiments have shown that the flows are actually generated solely by the movements of the cilia. These act like conveyor belts and would therefore be an ideal means of transporting messenger substances to the right place in the brain,” says Eberhard Bodenschatz, Head of the Department of Fluid Dynamics, Pattern Formation and Biocomplexity at the Max Planck Institute for Dynamics and Self-Organization. “These flows could also help to restrict substances locally, in that the fluid paths flowing against one another could act like barriers,” adds Christian Westendorf, second author of the study.

Changing flow directions

However, in contrast to the road networks that we travel on daily by car or bicycle, these fluid paths are by no means rigid. To the researchers’ surprise, the cilia changed the direction of beating in a temporal rhythm. This came as a big surprise as according to the prevalent school of thought the direction of cilia beating cannot be changed.

“In the cerebral fluid of humans, there are hundreds – if not thousands – of physiologically active substances,” Eichele explains. “We are assuming that the network of flows we discovered plays an important role in distributing these substances. In other experiments, we would like to look at which messenger substances are transported via the flows, and where these are ultimately deposited in the tissue”. “But the understanding of the physics of fluid dynamics of cilia is also itself a research objective,” adds Bodenschatz.

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

The fading affect bias impacts most memories — but election-related memories are surprisingly resilient
Memory

Scientists shed light on how forgiveness does and doesn’t reshape memories

June 20, 2025

A new study suggests that forgiving someone does not make us forget what they did—but it does change how we feel about it. People who forgave recalled past wrongs with just as much detail, but with less emotional pain.

Read moreDetails
Tree-covered neighborhoods linked to lower ADHD risk in children
Cognitive Science

Scientists demonstrate superior cognitive benefits of outdoor vs indoor physical activity

June 18, 2025

A new study suggests that where kids exercise matters: children who played basketball outside showed sharper thinking and faster reaction times than when playing indoors, hinting at a powerful brain-boosting synergy between physical activity and nature.

Read moreDetails
Scientists uncover biological pathway that could revolutionize anxiety treatment
Cognitive Science

Different parts of the same neuron learn in different ways, study finds

June 16, 2025

Researchers have discovered that apical and basal dendrites of the same neuron use different strategies to learn, suggesting neurons adapt more flexibly than previously thought. The findings help explain how the brain fine-tunes its wiring during learning.

Read moreDetails
Poor sleep may shrink brain regions vulnerable to Alzheimer’s disease, study suggests
Memory

Neuroscientists discover biological mechanism that helps the brain ignore irrelevant information

June 14, 2025

New research suggests the brain uses a learning rule at inhibitory synapses to block out distractions during memory replay. This process enables the hippocampus to prioritize useful patterns over random noise, helping build more generalizable and reliable memories.

Read moreDetails
Brain boost from pecans? New study finds short-term cognitive benefits
Cognitive Science

Brain boost from pecans? New study finds short-term cognitive benefits

June 12, 2025

A new study published in Nutritional Neuroscience found that a pecan-enriched shake improved memory and attention in healthy young adults. Participants performed better on 8 of 23 cognitive tests after consuming pecans compared to a calorie-matched shake.

Read moreDetails
Democrats dislike Republicans more than Republicans dislike Democrats, studies find
Cognitive Science

New neuroscience study reveals sex-specific brain responses to threat

June 11, 2025

A new study shows that male and female mice engage distinct brain circuits when responding to threat, challenging the assumption that similar behavior reflects identical brain function. The findings highlight the need for sex-inclusive neuroscience research.

Read moreDetails
HIIT workouts outshine others in boosting memory and brain health, new study finds
Cognitive Science

Mega-study shows exercise boosts cognitive functioning across all ages and health conditions

June 11, 2025

From children to older adults, exercise enhances brainpower. A sweeping new analysis shows that physical activity improves general cognition, memory, and executive function in both healthy and clinical populations, reinforcing its value for mental sharpness at any age.

Read moreDetails
Democrats dislike Republicans more than Republicans dislike Democrats, studies find
Memory

Reduced memory specificity linked to earlier onset of psychiatric disorders in youth

June 11, 2025

New research suggests that difficulty recalling specific personal memories may be an early warning sign of mental illness in youth. A meta-analysis finds this memory trait predicts first-time psychiatric diagnoses, especially depression, during adolescence and early adulthood.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

New neuroscience research reveals brain antioxidant deficit in depression

Scientists uncover kidney-to-brain route for Parkinson’s-related protein spread

Scientists reveal a surprising link between depression and microbes in your mouth

New study sheds light on the psychological roots of collective violence

Experienced FPS gamers show faster, more efficient eye movements during aiming tasks, study finds

Study links moderate awe in psychedelic ayahuasca journeys to better well-being

Dementia: Tactile decline may signal early cognitive impairment

Adults’ beliefs about children and race shift when a child’s race is specified, study finds

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy