Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health ADHD

Scientists develop AI-based method to detect ADHD by analyzing videos

by Vladimir Hedrih
December 16, 2024
in ADHD, Artificial Intelligence
(Photo credit: DALL·E)

(Photo credit: DALL·E)

Share on TwitterShare on Facebook

A group of U.K. scientists has developed a machine-learning-based method to detect ADHD by analyzing the actions of individuals in video clips. These videos included recordings of study participants working on specific tasks, captured using multiple cameras from different angles. The authors report that this method outperformed alternative diagnostic systems in differentiating between individuals with and without ADHD. The research was published in Neuroscience Applied.

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by persistent patterns of inattention, hyperactivity, and impulsivity that interfere with functioning or development. Individuals with ADHD struggle to focus on tasks, follow instructions, or organize activities and are easily distracted by external stimuli. Hyperactivity symptoms can include excessive fidgeting, restlessness, or an inability to remain seated or quiet when appropriate.

The disorder typically begins in childhood and can continue into adulthood. It adversely affects academic performance, work responsibilities, and social relationships. ADHD is most often diagnosed when a child starts school, as their behaviors are generally seen as disruptive and frequently result in poor academic performance. To mitigate these and other adverse consequences, timely diagnosis is of utmost importance.

Study author Yichun Li and his colleagues aimed to create an automated ADHD detection system. Their plan involved designing a trial to assess the actions and reactions of individuals with ADHD. Findings from this trial would then be used to develop a detection system based on recognizing human actions from video recordings. The system would classify individuals in the videos as either having ADHD or not.

The researchers first recorded videos of 10 adults diagnosed with ADHD and 12 without the disorder performing designated tasks. Among participants with ADHD, five were male and five were female. Of the participants without ADHD, eight were male and four were female. Participants’ ages ranged between 18 and 45 years. Individuals with ADHD were recruited by CNTW-NHS Foundation Trust, while healthy participants volunteered from Newcastle University in the U.K.

The videos were recorded from three fields of view—front, left, and right—using GoPro cameras. Additionally, the researchers recorded audio and used a keypad’s touch signal to capture tactile data. A screen displaying posters was placed within the participants’ line of sight, and various small objects, such as pens and spinners, were placed on the desk to serve as distractions, which individuals with ADHD are generally more susceptible to.

During the recordings, participants conducted a series of activities, including a 10-20 minute interview, the Cambridge Neurological Test Automated Battery, the beep reaction task (where participants respond to randomly generated beeps), and watching videos labeled as exciting. The entire process lasted about 1 to 1.5 hours.

Google News Preferences Add PsyPost to your preferred sources

The researchers created a machine-learning system that recognized elements and movements of the human body from the videos and identified the actions individuals were performing. The extracted information was used to generate various indexes indicating how much the behavior of the person in the video aligned with that expected of individuals with ADHD. Ultimately, the system classified individuals in the videos as having ADHD or not. The authors tested the system using different processing options and selected the best-performing one.

In the final tests, the system achieved a classification accuracy of 95.5%, outperforming similar classification systems based on magnetic resonance imaging (MRI), electroencephalography (EEG), or trajectory analysis. Additionally, the testing procedure was reported to be significantly less expensive.

“Experimental results demonstrate that our system outperforms state-of-the-art methods in terms of F1 score [a measure of prediction precision], accuracy, and AUC [area under the curve, another measure of how good a diagnostic system is]. Compared to conventional EEG [electroencephalography] and fMRI-based techniques [functional magnetic resonance imaging], our system is cost-effective, highlighting its potential for clinical practice. The collected data and results can be shared with doctors to support their diagnosis and follow-up procedures,” the study authors concluded.

The study presents a novel system for recognizing ADHD based on machine learning. However, the authors note that the system was less accurate in identifying females with ADHD. They attribute this to behavioral differences between males and females, with females exhibiting “prolonged small actions” that are more easily overlooked. Furthermore, the system’s performance on shorter video recordings was not as robust as on longer ones.

The paper, “ADHD Detection Based on Human Action Recognition,” was authored by Yichun Li, Rajesh Nair, and Syed Mohsen Naqvi.

RELATED

Surprising link found between hyperthyroidism and dark personality traits
ADHD

ADHD diagnoses are significantly elevated among autistic adults on Medicaid

January 31, 2026
Changing implicit stereotypes helps men see themselves as more caring
ADHD

Fathers’ boredom proneness associated with his children’s ADHD tendencies

January 30, 2026
How AI’s distorted body ideals could contribute to body dysmorphia
Artificial Intelligence

How AI’s distorted body ideals could contribute to body dysmorphia

January 28, 2026
New psychology research finds romantic cues reduce self-control and increase risky behavior
Artificial Intelligence

Machine learning identifies brain patterns that predict antidepressant success

January 25, 2026
Genetic factors likely confound the link between c-sections and offspring mental health
Addiction

AI identifies behavioral traits that predict alcohol preference during adolescence

January 24, 2026
Scientists shocked to find AI’s social desirability bias “exceeds typical human standards”
Artificial Intelligence

A simple language switch can make AI models behave significantly differently

January 23, 2026
LLM red teamers: People are hacking AI chatbots just for fun and now researchers have catalogued 35 “jailbreak” techniques
Artificial Intelligence

Are you suffering from “cognitive atrophy” due to AI overuse?

January 22, 2026
Scientists reveal atypical depression is a distinct biological subtype linked to antidepressant resistance
Artificial Intelligence

Researchers are using Dungeons & Dragons to find the breaking points of major AI models

January 22, 2026

STAY CONNECTED

LATEST

Wealthier men show higher metabolism in brain regions controlling reward and stress

What your fears about the future might reveal about your cellular age

The hidden role of vulnerable dark personality traits in digital addiction

Depression and anxiety linked to stronger inflammation in sexual minority adults compared to heterosexuals

High-precision neurofeedback accelerates the mental health benefits of meditation

Stress does not appear to release stored THC into the bloodstream

Half of the racial mortality gap is explained by stress and inflammation

For romantic satisfaction, quantity of affection beats similarity

RSS Psychology of Selling

  • Surprising link found between greed and poor work results among salespeople
  • Intrinsic motivation drives sales performance better than financial rewards
  • New research links faking emotions to higher turnover in B2B sales
  • How defending your opinion changes your confidence
  • The science behind why accessibility drives revenue in the fashion sector
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy