Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Neuroimaging

Scientists show how common sleep aid disrupts brain’s natural cleaning process

by Eric W. Dolan
January 26, 2025
in Neuroimaging, Sleep
[Adobe Stock]

[Adobe Stock]

Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

Scientists have discovered that rhythmic oscillations of a specific neurotransmitter play a vital role in clearing toxic proteins from the brain during non-rapid eye movement (non-REM) sleep. These oscillations drive the glymphatic system by powering the coordinated movement of cerebrospinal fluid and blood. However, the commonly prescribed sleep aid zolpidem (commonly marketed as Ambien) disrupts this process, potentially impairing the brain’s ability to clear waste. The findings have been published in the journal Cell.

The glymphatic system is a network in the brain responsible for clearing waste products, such as amyloid and tau proteins, which are associated with neurodegenerative diseases like Alzheimer’s. Unlike other organs, the brain lacks traditional lymphatic vessels for waste removal. Instead, it relies on cerebrospinal fluid (CSF) to flush out toxins through specialized spaces surrounding blood vessels.

“When we started this study, we already knew that the glymphatic system is vital for cleaning the brain, that it relies on brain fluid (CSF) flushing through the brain, and that it is activated during sleep. However, we did not know how sleep was driving the removal of waste from the brain,” explained Natalie Hauglund, the first author of the study and currently a postdoctoral fellow at the University of Oxford.

The researchers conducted a series of experiments on mice to observe the glymphatic system in action during sleep.

The first set of experiments focused on how norepinephrine, a neurotransmitter that regulates arousal and blood vessel constriction, interacts with cerebral blood flow and CSF movement during sleep. Using “flow fiber photometry,” a technique that allows real-time tracking of norepinephrine levels, blood flow, and CSF dynamics, the researchers found that norepinephrine levels exhibited slow, rhythmic oscillations during non-REM sleep.

These oscillations coincided with synchronized cycles of blood vessel constriction and relaxation (vasomotion), which created a pumping mechanism to drive CSF through the brain. Importantly, these oscillations were absent during wakefulness and disrupted during REM sleep, suggesting that non-REM sleep provides a unique state for optimal glymphatic activity.

To confirm that norepinephrine oscillations were directly driving vasomotion, Hauglund and her colleagues used optogenetics to manipulate the locus coeruleus, a brain region responsible for norepinephrine release. By stimulating or inhibiting this region, they demonstrated that norepinephrine release tightly controlled blood vessel dynamics and, by extension, CSF flow.

To directly test whether vasomotion acts as a “pump” for CSF flow, the researchers conducted optogenetic experiments targeting smooth muscle cells in blood vessels. By using light to stimulate rhythmic constriction and relaxation of these vessels in naturally sleeping mice, they artificially increased the frequency of vasomotion.

The stimulation enhanced CSF flow and glymphatic clearance in brain regions near the site of vascular manipulation, providing direct evidence that cycles of arterial constriction and dilation drive glymphatic activity. This experiment confirmed that vasomotion plays a central role in the glymphatic system.

“We discovered that what drives the CSF flow through the brain, and thereby the brain cleaning during sleep, is a slow pumping mechanism created by synchronous constriction and dilation of the blood vessels in the brain,” Hauglund told PsyPost. “This is controlled by a signaling molecule called norepinephrine, which is released in the brain roughly every 50 seconds, creating slow oscillations in norepinephrine levels during sleep.”

Another experiment investigated how natural sleep microarchitecture, particularly the frequency of brief awakenings called micro-arousals, influenced glymphatic activity. Using EEG and EMG recordings to monitor brain activity and sleep states, the researchers correlated the frequency of micro-arousals with glymphatic clearance efficiency.

Mice with more frequent micro-arousals during non-REM sleep exhibited greater glymphatic clearance of tracer molecules. This finding supported the idea that norepinephrine oscillations and the associated vascular dynamics, which often coincide with micro-arousals, play a pivotal role in driving CSF flow.

Interestingly, while micro-arousals were associated with increased glymphatic activity, they were not the sole determinant of clearance. The researchers concluded that the oscillatory release of norepinephrine during non-REM sleep acts as the primary driver of CSF flow, with micro-arousals serving as a secondary, parallel process.

“Our study showed that the frequency of micro-arousals, tiny awakenings that happen throughout the night without being perceived by the sleeper, correlates positively with glymphatic flow,” Hauglund explained. “This may seem surprising, as micro-arousals are often viewed as a sign of fragmented sleep.”

“However, more and more evidence indicates that micro-arousals are a natural part of healthy sleep and may have important functions for the beneficial effects of sleep. The reason for the correlation between glymphatic flow and micro-arousals is that the norepinephrine waves that control the ‘pump’ driving the CSF flow also induce micro-arousals.”

To investigate the effects of zolpidem on sleep architecture and glymphatic activity, the researchers administered the drug to a group of mice and monitored norepinephrine levels, blood vessel dynamics, and CSF flow. Although zolpidem helped the mice fall asleep more quickly, it significantly disrupted the infraslow oscillations in norepinephrine levels and blood vessel vasomotion that are critical for glymphatic clearance.

Using EEG recordings, the researchers also observed that zolpidem-treated mice had more frequent micro-arousals but with diminished norepinephrine peaks. As a result, the natural synchronization of blood flow and CSF movement was impaired.

When the researchers measured glymphatic clearance by injecting a fluorescent tracer into the CSF, they found that zolpidem-treated mice exhibited reduced tracer inflow and clearance compared to control mice. This indicated that while zolpidem induced sleep, it interfered with the restorative processes of natural sleep, specifically the brain’s ability to clear harmful waste products through the glymphatic system.

“We found that the sleep aid zolpidem disrupted the norepinephrine oscillations and thereby reduced the fluid flow,” Hauglund told PsyPost. “This suggests that the sleep you get while using sleep medication is not as beneficial as regular sleep in terms of restorative processes, such as brain cleaning.”

The experiments were conducted in mice, which, while biologically similar in some respects, do not fully replicate human sleep architecture or physiology. However, Hauglund noted that “results from human studies indicate that the same mechanism exists. For example, MRI scans of people sleeping inside a scanner have shown that slow oscillations in blood volume and CSF volume are present in the brain during sleep.”

Future research could investigate how factors such as aging, vascular health, and neurodegenerative diseases impact the system’s efficiency. Exploring potential interventions to enhance glymphatic clearance—whether through pharmacological agents, lifestyle modifications, or non-invasive therapies—would also be valuable.

“Many questions are still waiting to be answered,” Hauglund said. “For example, is will be important to see how different disease states affect the CSF pumping, and if there are ways to enhance the ‘pump’ in order to boost the removal of waste from the brain.”

The study, “Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep,” was authored by Natalie L. Hauglund, Mie Andersen, Klaudia Tokarska, Tessa Radovanovic, Celia Kjaerby, Frederikke L. Sørensen, Zuzanna Bojarowska, Verena Untiet, Sheyla B. Ballestero, Mie G. Kolmos, Pia Weikop, Hajime Hirase, and Maiken Nedergaard.

RELATED

Most bereaved people dream of or sense the deceased, study finds — and the two may be linked
Cognitive Science

This strange phenomenon could unlock the secrets of the mind

October 18, 2025
Ketamine repairs reward circuitry to reverse stress-induced anhedonia
Developmental Psychology

An invisible threat to newborns’ brains may be hiding in the air we breathe

October 18, 2025
Your brain’s insulation might become emergency energy during a marathon
Cognitive Science

Neuroscientists discover a repeating rhythm that guides brain network activity

October 18, 2025
Scientists uncover previously unknown target of alcohol in the brain: the TMEM132B-GABAA receptor complex
Anxiety

New study reveals how the brain learns to adapt to harmless threats

October 17, 2025
Evolutionary psychology reveals patterns in mass murder motivations across life stages
Cognitive Science

Neuroscientists can now predict what color you’re seeing. The secret is surprisingly black and white.

October 17, 2025
PsyPost - Psychology News - Young boy with a sad or bored expression resting his head on his hand at a desk with books and pencils.
Developmental Psychology

Income inequality appears to shape children’s brain development

October 16, 2025
Brain scan MRI images of human brain in blue color.
Dementia

Your brain isn’t just shrinking with age, it’s doing something much stranger

October 16, 2025
Neurons illuminated in a digital illustration representing brain activity and neuroscience research.
Neuroimaging

Scientists identify neural pathway underlying contagious aggression

October 15, 2025

STAY CONNECTED

LATEST

This strange phenomenon could unlock the secrets of the mind

An invisible threat to newborns’ brains may be hiding in the air we breathe

Psychiatrists detail bizarre case of incubus syndrome triggered by alcohol withdrawal

Women with larger breasts tend to report higher self-esteem, study finds

Adolescents exposed to porn show higher rates of risky behavior and traditional gender views

Neuroscientists discover a repeating rhythm that guides brain network activity

New study reveals how the brain learns to adapt to harmless threats

Do pets really make us happier? The science is complicated

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy