Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health Anxiety

Scientists uncover biological pathway that could revolutionize anxiety treatment

by Eric W. Dolan
August 14, 2024
in Anxiety, Neuroimaging
[Adobe Stock]

[Adobe Stock]

Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

In a groundbreaking new study published in the Proceedings of the National Academy of Sciences, scientists have uncovered a biological pathway in the brain that is highly sensitive to chronic stress and plays a critical role in anxiety-like behaviors. By manipulating this pathway in mice, the team was able to reverse anxiety symptoms, providing a potential new target for therapeutic strategies against anxiety and depression.

Anxiety and depression are among the most common mental health disorders globally, affecting roughly one-third of the population. Despite the availability of treatments like selective serotonin reuptake inhibitors (which increase serotonin levels in the brain) and drugs targeting gamma-aminobutyric acid receptors (which enhance inhibitory neurotransmission), these treatments have significant drawbacks. They can take weeks to become effective, may cause unwanted side effects, and often fail to work for a substantial number of patients.

The researchers sought to find a more targeted approach to treating anxiety by focusing on the specific molecular pathways directly involved in the stress response. Chronic stress is known to cause changes in the brain that contribute to the development of anxiety and depression, but the exact mechanisms have remained elusive. By identifying the precise pathways affected by stress, the researchers hoped to find new ways to intervene and potentially develop more effective treatments.

“Stress and anxiety are among the most prevalent neurological disorders affecting the public, and the recent COVID-19 pandemic has exacerbated this burden, highlighting the need for improved medications,” explained study author Saurabh Pandey, a member of Wei Lu’s Synapse and Neural Circuit Research Lab at the National Institute of Neurological Disorders and Stroke.

To explore this, the researchers employed a series of experiments involving mice that were exposed to chronic stress. They used two different models of stress: one involving restraint stress, where mice were physically restrained for several hours a day over two weeks, and another involving maternal separation, where young mice were separated from their mothers for a few hours daily. Both stress models are known to induce anxiety-like behaviors in mice, making them suitable for studying the effects of chronic stress on the brain.

The researchers then analyzed the brains of these stressed mice, particularly focusing on the hippocampus, a region known to be involved in emotion regulation and stress response. They observed that chronic stress did not change the overall levels of many synaptic proteins but significantly reduced the expression of specific inhibitory synaptic proteins. These proteins are crucial for maintaining the balance of excitation and inhibition in the brain, which is essential for normal emotional functioning.

One of the key findings was that chronic stress led to an increase in the activity of Src kinase, an enzyme that modifies other proteins by adding phosphate groups to them. This increased Src activity, in turn, led to the phosphorylation of calmodulin, a protein that interacts with another protein called MyosinVa. MyosinVa is responsible for transporting proteins like Neuroligin2 (NL2) to the synapses, where they help facilitate inhibitory neurotransmission.

Under stress, the interaction between MyosinVa and NL2 was disrupted, leading to reduced levels of NL2 at the synapses and, consequently, decreased inhibitory transmission. This disruption was closely associated with the development of anxiety-like behaviors in the stressed mice.

To further understand the role of this pathway, the researchers genetically manipulated mice to lack a specific part of the NL2 protein that interacts with MyosinVa. These genetically modified mice exhibited anxiety-like behaviors even without being subjected to stress, underscoring the importance of the MyoVa-NL2 interaction in regulating anxiety. Moreover, when these mice were exposed to chronic stress, their anxiety behaviors did not worsen, suggesting that the disruption of this pathway alone was sufficient to cause high anxiety.

“We discovered that two distinct forms of chronic stress activate a shared signaling pathway in the brain in response to both physical and psychological stress,” Pandey told PsyPost.

In a pivotal experiment, the researchers tested whether they could reverse the stress-induced anxiety by pharmacologically inhibiting Src kinase, thereby reducing the phosphorylation of calmodulin and restoring the MyoVa-NL2 interaction. They administered a drug known as PP2, which inhibits Src kinase, to the chronically stressed mice. The treatment successfully restored the levels of inhibitory synaptic proteins, including NL2, and reversed the anxiety-like behaviors in these mice.

However, when the same drug was administered to the genetically modified mice that lacked the MyoVa-NL2 interaction, the drug had no effect. This finding confirmed that the MyoVa-NL2 interaction is crucial for the regulation of anxiety and that the pathway involving Src kinase, calmodulin, MyoVa, and NL2 is a critical mechanism through which chronic stress induces anxiety.

The implications of this study are significant. It identifies a specific molecular pathway that could be targeted for developing new treatments for anxiety and depression. By focusing on this pathway, future therapies could potentially avoid the broad side effects associated with current treatments that affect a wide range of neurotransmitter systems. This research also opens up new directions for exploring how stress affects the brain and contributes to mental health disorders.

“We have identified a novel molecular pathway that is highly responsive to anxiety and depressive disorders, offering a potential new avenue for therapeutic development,” Pandey said. “This study is significant, as it paves the way for a new line of drug development targeting anxiety and depressive disorders.”

However, the study has its limitations. The experiments were conducted in mice, and while mice are often used as models for human biology, there are always differences between species that must be considered. Additionally, the study focused primarily on the hippocampus, but other brain regions are also likely involved.

“We examined a specific brain region, the hippocampus, but we cannot rule out the possibility that other brain regions are involved or that the signaling pathway we discovered functions similarly in these regions,” Pandey explained. “We aim to extend this study through collaboration with researchers involved in pre-clinical or clinical studies.”

The study, “Reversing anxiety by targeting a stress-responsive signaling pathway,” was authored by Saurabh Pandey, Wenyan Han, Jun Li, Ryan Shepard, Kunwei Wu, David Castellano, Qingjun Tian, Lijin Dong, Yan Li, and Wei Lu.

TweetSendScanShareSendPin2ShareShareShareShareShare

RELATED

Liver health may influence mental health via inflammation and glutamate levels
Anxiety

Liver health may influence mental health via inflammation and glutamate levels

June 28, 2025

A new study suggests that diets high in fat and fructose can damage the liver and trigger anxiety-like behaviors in mice. The research also found that corilagin, a natural compound, reversed many of these harmful effects.

Read moreDetails
Muscle contractions release chemical signals that promote brain network development
Memory

Sleep helps stitch memories into cognitive maps, according to new neuroscience breakthrough

June 28, 2025

Scientists have discovered that forming a mental map of a new environment takes more than just recognizing individual places—it also requires sleep. The study highlights how weakly tuned neurons gradually become synchronized to encode space as a connected whole.

Read moreDetails
Regular psychedelic users exhibit different brain responses to self-related thoughts, study finds
Neuroimaging

Regular psychedelic users exhibit different brain responses to self-related thoughts, study finds

June 28, 2025

A new study suggests that regular users of psychedelics may process self-related thoughts differently at both psychological and brain levels, revealing altered patterns of brain activity during self-reflection compared to non-users who intend to try psychedelics.

Read moreDetails
Reduced pineal gland volume observed in patients with obsessive-compulsive disorder
Cognitive Science

Neuroscientists identify key gatekeeper of human consciousness

June 27, 2025

Using rare brain recordings from patients, scientists found that the thalamus helps trigger visual awareness. The study reveals that this deep brain region sends synchronized signals to the cortex, acting as a gateway for conscious perception.

Read moreDetails
Neuroscientists identify a reversible biological mechanism behind drug-induced cognitive deficits
Depression

New study links intermittent fasting to improved mood via brain’s dopamine system

June 27, 2025

A new study suggests that intermittent fasting may reduce symptoms of depression by activating dopamine D1 receptors in the brain’s prefrontal cortex. The findings point to a potential non-drug approach for mood disorders rooted in brain signaling.

Read moreDetails
How people end romantic relationships: New study pinpoints three common break up strategies
Anxiety

Spider fear inflates size perception, highlighting the role of emotion in threat assessment

June 26, 2025

A new study finds that people afraid of spiders perceive them as larger than they really are, while arachnology experts judge their size accurately. The findings shed light on how emotion and knowledge shape perception of threatening creatures.

Read moreDetails
How people end romantic relationships: New study pinpoints three common break up strategies
Autism

Brain connectivity shift across puberty may explain autism risk in 22q11.2 deletion syndrome

June 26, 2025

Scientists have uncovered how puberty reshapes brain connectivity in 22q11.2 deletion syndrome, a genetic condition linked to autism and schizophrenia. The findings highlight how changes in synapses and brain connections may shape social behavior and mental health outcomes later in life.

Read moreDetails
Anxious minds don’t always fixate on danger, according to new study
Anxiety

Anxious minds don’t always fixate on danger, according to new study

June 25, 2025

A new study challenges long‑held ideas about anxiety and attention. It finds that when motivated, anxious people can shift focus from threats just as quickly as others — suggesting that “dwelling” on threats may be more about circumstance than an inherent deficit.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Scientists show how you’re unknowingly sealing yourself in an information bubble

Liver health may influence mental health via inflammation and glutamate levels

Sleep helps stitch memories into cognitive maps, according to new neuroscience breakthrough

Radical leaders inspire stronger devotion because they make followers feel significant, study finds

Openness to sugar relationships tied to short-term mating, not life history strategy

Regular psychedelic users exhibit different brain responses to self-related thoughts, study finds

New psychology research uncovers surprisingly consistent misjudgments of tattooed individuals

Neuroscientists identify key gatekeeper of human consciousness

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy