Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Sleep’s secret power: Timing bedtime closely after practice sharpens motor skills

by Eric W. Dolan
August 12, 2024
in Cognitive Science, Sleep
Share on TwitterShare on Facebook

When you learn a new skill, like playing the piano or mastering a golf swing, you might have heard that “practice makes perfect.” However, a recent study published in the Journal of Neuroscience suggests that the timing of your sleep may also play a significant role. Researchers found that motor memories—our brain’s way of holding on to skills and actions—are not just consolidated over time, but they can be significantly enhanced when sleep closely follows practice.

The research team set out to explore a longstanding debate in neuroscience: Does sleep play a role in consolidating motor memories, or is this process solely a function of time? While sleep has long been known to improve declarative memory—the type that helps us recall facts and events—its role in motor memory, such as learning new physical skills, has been less clear.

Previous studies suggested that motor memories, particularly those involved in adapting to new sensorimotor conditions, consolidate with time, independent of sleep. However, these studies did not consider the timing between training and sleep, which could be a critical factor.

In this study, the researchers proposed that motor memories might indeed benefit from sleep, but only when sleep occurs shortly after practice while the memory is still fresh and fragile. This hypothesis, if confirmed, would indicate that there are common mechanisms in how different types of memories are consolidated, whether they involve learning facts or mastering new skills.

“While it is well-established that sleep enhances conscious memories of facts and events, its role in consolidating memories of motor skills such as riding a bike remains a matter of debate,” said study author Valeria Della-Maggiore, the director of the Physiology of Action Lab at the University of Buenos Aires, professor at the University of San Martin, and adjunct professor at McGill University.

“However, most studies challenging the role of sleep in motor learning have largely overlooked the significance of the time interval elapsed between training and sleep as a relevant factor. In our study, we aimed to investigate the proximity between training and bedtime as a main modulator given the potential impact of sleep in optimizing training and rehabilitation protocols.”

To test their hypothesis, the researchers conducted a series of experiments involving 290 participants, all right-handed, with no history of neurological or psychiatric disorders. The participants, ranging in age from about 20 to 28 years, were recruited from the School of Medicine at the University of Buenos Aires. Before and during the study, they maintained regular sleep schedules, which were monitored through self-reported logs.

The study used a visuomotor adaptation task, a well-established method for examining sensorimotor adaptation. Participants had to move a cursor on a computer screen to hit targets using a joystick. The trick was that sometimes the cursor’s movement was altered by an optical rotation, forcing participants to adapt their hand movements to hit the target accurately. This task allowed researchers to measure how well participants retained the ability to adapt to these changes—a measure of motor memory.

In the first experiment, 111 participants were split into five groups, each tested at different intervals after training, ranging from 15 minutes to nine hours. These intervals did not control when participants went to sleep, mimicking everyday situations where people train at different times of the day. Another group of participants trained and then slept before being tested 24 hours later.

In the second experiment, the researchers sought to find the most vulnerable period for memory consolidation by introducing an interference — another learning task — to see how quickly the motor memory from the first task would decay. A sample of 92 participants adapted to two opposite optical rotations separated by different intervals, from five minutes to 24 hours, with memory retention tested the next day.

In the final experiment, the researchers directly tested the hypothesis that sleep benefits sensorimotor adaptation memory only when it occurs soon after learning, within the identified critical window. A sample of 74 participants were divided into two main groups: one group trained on the task late at night and went to sleep shortly afterward, while the other group trained in the morning and did not sleep until much later. Both groups were tested 24 hours after their initial training.

To control for potential circadian effects, the researchers also included two additional control groups: one trained in the evening and tested in the morning after a full night’s sleep, and the other trained in the morning and tested in the evening without an intermediate sleep period.

In the first experiment, where the timing between training and sleep was not controlled, there was no significant difference in memory retention between participants who slept and those who did not. This finding aligned with previous studies suggesting that motor memory consolidation does not rely on sleep when training is spread out over the day.

However, the second experiment revealed that motor memories were most fragile — hence, most in need of consolidation — within the first hour after training. During this time, introducing a second task significantly hindered the retention of the first task. This discovery highlighted a critical window during which the brain is most susceptible to interference.

The third experiment provided the most compelling evidence. When participants trained just before going to sleep, their memory retention was significantly better — by about 30% — than when they trained and stayed awake for several hours before sleeping. The improvement was tied to specific changes in brain activity during sleep, including increased density of sleep spindles (brief bursts of brain activity during non-rapid eye movement sleep) and their coupling with slow oscillations. These changes were particularly pronounced over the brain hemisphere opposite to the hand used in the task, suggesting that sleep actively consolidates motor memory by fine-tuning neural connections.

“We were surprised by the consistent memory enhancement of approximately 30% observed across independently trained groups,” Della-Maggiore told PsyPost. “We were pleased to replicate previous findings from our lab showing that sleep specifically modulates neural markers of memory consolidation over the brain hemisphere contralateral (opposite) to the trained hand.”

The implications of this study are far-reaching. If the timing of sleep can significantly enhance motor memory, this could change how we approach skill training and rehabilitation. Athletes might benefit from napping shortly after practice, and rehabilitation programs could be optimized by aligning therapy sessions with patients’ sleep schedules.

“Timing skill practice around your sleep schedule may significantly enhance your ability to retain and perform that skill,” Della-Maggiore said. “This simple adjustment could effectively boost motor learning and recovery in sports and rehabilitation settings.”

While these findings are promising, the study has limitations that future research should address. First, the motor learning tasks were highly controlled and may not fully represent more complex, real-life activities. Whether the same sleep-related benefits would apply to skills like playing a musical instrument or sports remains to be seen. Additionally, while the study controlled for sleep quality, it did not explore whether shorter naps could have a similar effect as a full night of sleep.

“We are now designing a study to determine whether our work applies to real-life activities, which will be crucial to assessing its translational impact,” Della-Maggiore said. “Our long-term goal is to determine whether the beneficial effects of sleep extend to real-life motor tasks, such as sports and the use of complex tools, and to explore its effectiveness in patients with motor injuries. We also aim to assess whether a short nap can be as beneficial as a full night of sleep. In parallel, we are developing sleep monitoring and wearable devices to enable personalized, data-driven neuro-interventions in home settings, beyond the clinical environment.”

The study, “Sleep consolidation potentiates sensorimotor adaptation,” was authored by Agustin Solano, Gonzalo Lerner, Guillermina Griffa, Alvaro Deleglise, Pedro Caffaro, Luis Riquelme, Daniel Perez-Chada, and Valeria Della-Maggiore.

 

RELATED

Neuroimaging study suggests serotonin reuptake inhibitor treatment can improve brain ventricle volume
Cognitive Science

Study finds no independent link between visceral fat index and cognitive decline

December 22, 2025
Musical memory remains resilient in old age, even for unfamiliar tunes
Dementia

Listening to music immediately after learning improves memory in older adults and Alzheimer’s patients

December 21, 2025
High-intensity interval training might help with premature ejaculation
Cognitive Science

How running tricks your brain into overestimating time

December 19, 2025
Girl taking a selfie on her smartphone, enjoying a drink, smiling and outdoors, illustrating social media, happiness, and modern communication.
Cognitive Science

Large meta-analysis links TikTok and Instagram Reels to poorer cognitive and mental health

December 18, 2025
Ghost sensations reveal a split between body image and reality
Cognitive Science

Ghost sensations reveal a split between body image and reality

December 17, 2025
New psychology research flips the script on happiness and self-control
Memory

Deep sleep reorganizes brain networks used for memory recall

December 16, 2025
New psychology research flips the script on happiness and self-control
Memory

Couples share a unique form of contagious forgetting, new research suggests

December 16, 2025
Paternal psychological strengths linked to lower maternal inflammation in married couples
Neuroimaging

Disrupted sleep might stop the brain from flushing out toxic waste

December 15, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Competitive athletes exhibit lower off-field aggression and enhanced brain connectivity

Wrinkles around the eyes are the primary driver of age perception across five ethnic groups

Microdosing cannabis: a new hope for Alzheimer’s patients?

Inflammation linked to brain reward dysfunction in American Indians with depression

Study finds no independent link between visceral fat index and cognitive decline

Longer paternity leave is linked to reduced maternal gateclosing

Adolescents with high emotional intelligence are less likely to trust AI

Not all psychopathic traits are equal when it comes to sexual aggression

RSS Psychology of Selling

  • Brain scans suggest that brand longevity signals quality to shoppers
  • The double-edged sword of dynamic pricing in online retail
  • How expert persuasion impacts willingness to pay for sugar-containing products
  • Experiments in sports marketing show product fit drives endorsement success
  • Study finds consumers must be relaxed for gamified ads to drive sales
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy