Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Study: GPS navigation ‘switches off’ parts of the brain that would otherwise be used

by University College London
March 21, 2017
in Cognitive Science
Illustration of brain regions studied in mental illness: ACC, amygdala, hippocampus, prefrontal cortex. (Photo credit: NIH)

Illustration of brain regions studied in mental illness: ACC, amygdala, hippocampus, prefrontal cortex. (Photo credit: NIH)

Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

Using a satnav to get to your destination ‘switches off’ parts of the brain that would otherwise be used to simulate different routes, reveals new UCL research.

The study, published in Nature Communications and funded by Wellcome, involved 24 volunteers navigating a simulation of Soho in central London while undergoing brain scans. The researchers investigated activity in the hippocampus, a brain region involved in memory and navigation, and the prefrontal cortex which is involved in planning and decision-making. They also mapped the labyrinth of London’s streets to understand how these brain regions reacted to them.

When volunteers navigated manually, their hippocampus and prefrontal cortex had spikes of activity when volunteers entered new streets. This brain activity was greater when the number of options to choose from increased, but no additional activity was detected when people followed satnav instructions.

“Entering a junction such as Seven Dials in London, where seven streets meet, would enhance activity in the hippocampus, whereas a dead-end would drive down its activity. If you are having a hard time navigating the mass of streets in a city, you are likely putting high demands on your hippocampus and prefrontal cortex,” explains senior author Dr Hugo Spiers (UCL Experimental Psychology). “Our results fit with models in which the hippocampus simulates journeys on future possible paths while the prefrontal cortex helps us to plan which ones will get us to our destination. When we have technology telling us which way to go, however, these parts of the brain simply don’t respond to the street network. In that sense our brain has switched off its interest in the streets around us.”

Previous UCL research has shown that the hippocampi of London taxi drivers expand as they learn ‘the Knowledge’, memorising the streets and landmarks of central London. The latest study suggests that drivers who follow satnav directions do not engage their hippocampus, likely limiting any learning of the city street network.

The team have also analysed the street networks of major cities around the world to visualise how easy they may be to navigate. With its complex network of small streets, London appears to be particularly taxing on the hippocampus. By contrast, much less mental effort may be needed to navigate Manhattan in New York. With its grid layout, at most junctions you can only go straight, left or right.

Senior author Dr Hugo Spiers is now on secondment as Director of Science at The Centric Lab, a consultancy and research organisation in London that uses neuroscience to inform building and city design.

“The next step for our lab will be working with smart tech companies, developers, and architects to help design spaces that are easier to navigate and increase wellbeing,” says Dr Spiers. “Our new findings allow us to look at the layout of a city or building and consider how the memory systems of the brain may likely react. For example, we could look at the layouts of care homes and hospitals to identify areas that might be particularly challenging for people with dementia and help to make them easier to navigate. Similarly, we could design new buildings that are dementia-friendly from the outset.”

Dr Amir-Homayoun Javadi who led the brain imaging analysis at UCL and now works at the University of Kent, says: “Understanding how the environment affects our brain is important. My research group is now exploring how physical and cognitive activity affect brain activity in a positive way. Satnavs clearly have their uses and their limitations.”

Dr Beatrix Emo, who led the city street analysis at UCL and now works at ETH Zurich, says: “Linking the structure of cities to behaviour has been around since the 1980s, but this is the first study to reveal the impact of that structure on the brain.”

TweetSendScanShareSendPin1ShareShareShareShareShare

RELATED

Brain oscillations reveal dynamic shifts in creative thought during metaphor generation
Cognitive Science

Brain oscillations reveal dynamic shifts in creative thought during metaphor generation

May 19, 2025

A new study reveals that creative metaphor generation involves shifting patterns of brain activity, with alpha oscillations playing a key role at different stages of the process, offering fresh insight into the neural dynamics behind verbal creativity.

Read moreDetails
Surprisingly widespread brain activity supports economic decision-making, new study finds
Cognitive Science

Surprisingly widespread brain activity supports economic decision-making, new study finds

May 19, 2025

A new study using direct brain recordings reveals that human economic decision-making is not localized to a single brain region. Instead, multiple areas work together, with high-frequency activity encoding risk, reward probability, and the final choice itself.

Read moreDetails
Scientists use brain activity to predict StarCraft II skill in fascinating new neuroscience research
Cognitive Science

Scientists use brain activity to predict StarCraft II skill in fascinating new neuroscience research

May 16, 2025

A study combining brain scans and gameplay data reveals that players with more efficient visual attention and stronger white matter connections excel at StarCraft II. The results highlight how neural traits shape success in cognitively demanding video games.

Read moreDetails
Neuroscientists discover music’s hidden power to reshape memory
Memory

Neuroscientists discover music’s hidden power to reshape memory

May 14, 2025

A new neuroimaging study reveals that listening to emotionally charged music during memory recall can change how we remember events. The music not only shaped what participants remembered but also altered the emotional tone of their memories one day later.

Read moreDetails
Study links anomalous experiences to subconscious connectedness and other psychological traits
Cognitive Science

Study links anomalous experiences to subconscious connectedness and other psychological traits

May 13, 2025

A new study suggests that unusual experiences like déjà vu or premonitions are not only common but linked to a distinct psychological trait called subconscious connectedness. Researchers found that people high in this trait reported significantly more anomalous experiences.

Read moreDetails
Eye-tracking study suggests that negative comments on social media are more attention-grabbing than positive comments
Cognitive Science

Can you train your brain to unsee optical illusions? Scientists think so

May 12, 2025

A recent study found that radiologists are less susceptible to optical illusions, likely due to their intensive visual training. The research challenges long-standing beliefs that illusions are automatic and suggests perceptual skills can be shaped over time.

Read moreDetails
Diets high in fat and sugar appear to harm cognitive function
Cognitive Science

Diets high in fat and sugar appear to harm cognitive function

May 10, 2025

Consuming a Western-style diet packed with sugar and saturated fats may hurt your brain, not just your waistline. A new study shows poorer performance on spatial memory tasks among people with diets high in processed, unhealthy foods.

Read moreDetails
People with lower cognitive ability more likely to fall for pseudo-profound bullshit
Cognitive Science

People with lower cognitive ability more likely to fall for pseudo-profound bullshit

May 9, 2025

A new meta-analysis published in Applied Cognitive Psychology finds that people with lower cognitive ability are more likely to find meaning in pseudo-profound nonsense. The study identifies key psychological traits linked to susceptibility to feel-good but meaningless statements.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Where you flirt matters: New research shows setting shapes romantic success

Psychedelic’s anti-anxiety effects can be separated from hallucinations by targeting specific brain circuits

New research reveals aging shifts gender stereotypes in unexpected ways

Optimistic individuals are more likely to respond to SSRI antidepressants

Brain oscillations reveal dynamic shifts in creative thought during metaphor generation

Surprisingly widespread brain activity supports economic decision-making, new study finds

Scientists finds altered attention-related brain connectivity in youth with anxiety

From fixed pulses to smart stimulation: Parkinson’s treatment takes a leap forward

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy