Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Psychopharmacology Cannabis

Study provides new insights into the neurobiological mechanisms underlying cannabis tolerance

by Eric W. Dolan
April 8, 2020
in Cannabis
(Photo credit: psdesign1)

(Photo credit: psdesign1)

Share on TwitterShare on Facebook
Follow PsyPost on Google News

New research has found that cannabis tolerance is linked to neurometabolic alterations in the brain’s reward circuitry. The findings, published in the journal Addiction Biology, help explain why the effects of cannabis are less prominent in frequent cannabis users.

“Cannabis is the most commonly used illicit drug in the world, with 4% of the global population reportedly using the substance. However due to a changing legal landscape, and rising interest in therapeutic utility, there is an increasing trend in (long-term) use,” said Natasha L. Mason (@NL_Mason), a PhD candidate at Maastricht University and the corresponding author of the new study.

“Importantly, a growing body of evidence suggests that the acute effects of cannabis are less prominent in regular cannabis users, suggesting development of tolerance to the impairing, as well as the rewarding, effects of the drug. Although this development of tolerance is quite well established, the neurobiological mechanisms underlying it are not.”

“These neurobiological mechanisms are important to elucidate, both in the context of therapeutic use of cannabis-based medications (e.g. deciding on dose in long-term treatment), as well as in the context of public health and safety of cannabis use when performing day-to-day operations (e.g. developing traffic laws),” Mason said.

In the double‐blind study, 12 occasional and 12 frequent cannabis users consumed the drug or a placebo before undergoing brain imaging scans. The participants also completed a measure of their reaction times and attentional lapses, along with an assessment of their subjective high.

The researchers observed significant differences between the occasional users, who consumed cannabis 1 time a month to 3 times a week, and the frequent users, who consumed the drug at least 4 times a week. In particular, cannabis resulted in alterations in the brain’s reward circuitry, including decreases in functional connectivity, in occasional users. But these changes were absent in chronic users.

“In the occasional users, we found that cannabis altered reward system circuitry in the brain, which was associated with our behavioral measures (increased feelings of high and decreased sustained attention). Such changes were absent in the chronic cannabis users, who did not show any brain changes or any cognitive impairment,” Mason told PsyPost.

“The finding that cannabis altered reward circuitry and distorted behavior in occasional users, but not chronic users, suggests the lack of behavioral response to cannabis intoxication in chronic users arrives from a blunted responsiveness in their reward circuitry, thus identifying a neurobiological mechanism of tolerance.”

“Cannabis tolerance is not a final, permanent state that is achieved after chronic cannabis use, but rather a temporary state of decreased sensitivity to cannabis exposure that dynamically fluctuates across the spectrum of a full-to-no experience of cannabis effects, depending on the pattern of cannabis use,” Mason added.

“However, little is known about cannabis use patterns and motives underlying such patterns among medical and recreational users, and the impact of changes in cannabis use patterns have not been studied in the lab. Thus knowledge on frequency, dose and duration of cannabis use that is needed to achieve, maintain or lessen tolerance however is very limited, but will be of importance in the context of cannabis therapeutics and in legal settings when evaluating the impact of cannabis exposure on human function.”

The study, “Reduced responsiveness of the reward system is associated with tolerance to cannabis impairment in chronic users“, was authored by Natasha L. Mason, Eef L. Theunissen, Nadia R.P.W. Hutten, Desmond H.Y. Tse, Stefan W. Toennes, Jacobus F.A. Jansen, Peter Stiers, and Johannes G. Ramaekers.

TweetSendScanShareSendPin2ShareShareShareShareShare

RELATED

Taking medicinal cannabis oil for insomnia does not impair cognition on the following day
Cannabis

Cannabis oil might help with drug-resistant epilepsy, study suggests

July 2, 2025

Nineteen patients with drug-resistant epilepsy experienced seizure freedom after cannabis oil treatment, with a median seizure-free duration of 245 days. Five remained seizure-free for over a year, and most reported improved quality of life and reduced seizure frequency.

Read moreDetails
Cannabis intoxication alters metabolism, but frequent users show fewer effects
Cannabis

Regular cannabis use linked to changes in brain activity regulating movement

June 20, 2025

Researchers have discovered that frequent cannabis users show reduced spontaneous brain activity in the motor cortex, and this neural suppression is tied to cannabis use severity and response speed, even though overall task performance remained comparable to non-users.

Read moreDetails
Cannabis and appetite: Scientists uncover the brain mechanism behind the munchies
Cannabis

The ‘entourage effect’ — what we don’t know about how cannabis works

June 2, 2025

Cannabis products promise custom experiences based on compound profiles, but the science behind these claims remains limited. While ideas like the “entourage effect” are popular, research on how cannabis compounds interact in humans is still in its early stages.

Read moreDetails
Cannabidiol shows promise for treating Alzheimer’s in mice by targeting brain hyperactivity
Alzheimer's Disease

Cannabidiol shows promise for treating Alzheimer’s in mice by targeting brain hyperactivity

May 26, 2025

In a study using an Alzheimer’s disease mouse model, researchers found that cannabidiol reduced memory loss and brain abnormalities. The compound worked by enhancing the function of glycine receptors, which help regulate neuronal activity in the brain's memory center.

Read moreDetails
CBD enhances verbal episodic memory — potentially counteracting the memory impairments associated with THC
Cannabis

Cannabidiol boosts social learning by enhancing brain acetylcholine signaling, study finds

May 11, 2025

Cannabidiol appears to improve social memory in mice, according to new research in Psychopharmacology. The study shows that CBD enhances the ability to remember food-related information from peers by increasing acetylcholine activity in the basal forebrain.

Read moreDetails
Researchers uncover causal evidence that cannabis legalization reduces problematic consumption
Cannabis

Researchers uncover causal evidence that cannabis legalization reduces problematic consumption

May 8, 2025

Researchers in Switzerland have completed the first randomized trial comparing legal and illegal cannabis use. The study suggests that public health-oriented cannabis access may help reduce misuse, particularly among people with more complex patterns of drug use.

Read moreDetails
Around 27% of individuals with ADHD develop cannabis use disorder at some point in their lives, study finds
Cannabis

Daily use of cannabis is strongly associated with chronic inflammation, study finds

May 6, 2025

A new study suggests daily cannabis use may be linked to chronic inflammation. Researchers found that young adults who used cannabis frequently had higher levels of suPAR, an inflammatory marker, while occasional users did not.

Read moreDetails
CBD amplifies THC’s impact instead of mitigating it, new cannabis research reveals
Addiction

N-acetylcysteine does not appear to be effective for cannabis use disorder

May 4, 2025

In a study of young people with cannabis use disorder, N-acetylcysteine failed to outperform a placebo in reducing cannabis use, suggesting that the supplement may not be effective unless combined with more intensive behavioral interventions like contingency management.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Neuroscientists shed new light on how heroin disrupts prefrontal brain function

New research identifies four distinct health pathways linked to Alzheimer’s disease

A surprising body part might provide key insights into schizophrenia risk

Religious belief linked to lower anxiety and better sleep in Israeli Druze study

A common vegetable may counteract brain changes linked to obesity

Massive psychology study reveals disturbing truths about Machiavellian leaders

Dementia: Your lifetime risk may be far greater than previously thought

Psychopathic tendencies may be associated with specific hormonal patterns

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy