Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

The brain communicates on several channels

by Max Planck Gesellshaft
January 28, 2016
in Cognitive Science
Photo credit: Alexandr Mitiuc/Fotolia

Photo credit: Alexandr Mitiuc/Fotolia

Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

In the brain, the visual cortex processes visual information and passes it from lower to higher areas of the brain. However, information also flows in the opposite direction, e.g. to direct attention to particular stimuli. But how does the brain know which path the information should take?

Researchers at the Ernst Strüngmann Institute (ESI) for Neuroscience in Frankfurt in Cooperation with Max Planck Society have now demonstrated that the visual cortex of human subjects uses different frequency channels depending on the direction in which information is being transported. Their findings were only possible thanks to previous research with macaque monkeys. They might help to understand the cause of psychiatric illnesses in which the two channels appear to be mixed up.

The terms “bottom-up” and “top-down” refer to processes by which the human brain processes information. “In the visual system, bottom-up communication occurs when information enters through the eyes and flows from lower to higher visual areas, i.e. from bottom to top,” explains Pascal Fries from the Ernst Strüngmann Institute for Neuroscience.

As soon as a person observes the environment, sensory input is continuously processed using the bottom-up principle. But how do we know that one piece of information is more important than another? Fries: “The top-down principle helps us to do this. The brain uses previous experiences to organize information in the present context and to make predictions on this basis.” The top-down flow therefore influences the bottom-up flow and steers our attention towards things that are important in the current situation. This can happen automatically, for example due to the sudden appearance of a threatening stimulus, as well as through attention, for example when we are looking for something or following instructions. “Many of our cognitive capabilities can only be explained by invoking this principle,” says Fries.

For the top-down principle to work, the brain requires mechanisms that pass information from higher to lower areas of the brain. The anatomical connections in the top-down direction are known for a long time, but how the information is sent through these connections has remained elusive.

Macaque monkeys helped Fries and his colleagues to get on the right track. First, they examined the bottom-up flow in the brains of those animals and found that it uses a particular frequency band of rhythmic neuronal activity, known as the gamma band, around 60 Hertz. Information flows from bottom to top, when rhythmic oscillatory activity of lower brain areas entrains the rhythm of the next higher area.

Subsequently, the neuroscientists discovered the channel for top-down information flow, namely the so-called alpha and beta frequency rhythms, between 10 and 20 Hertz. Thus, in essence, the hierarchically arranged areas of visual cortex use a separate frequency channel to send information from higher to lower areas. In their present work, the researchers show that a very similar principle is at work in the human brain. “We knew the rhythms and wanted to look for them in the human brain,” explains Fries. To do this, they used a technique known as magnetoencephalography (MEG). MEG uses sensors outside the head to record the magnetic fields, which result from the electric currents of active nerve cells. The measurements allow conclusions to be drawn about the activity in certain areas of the brain. “In the raw MEG data, signals from several brain areas are mixed and have to be separated as well as possible using advanced mathematical methods,” says Fries.

This is one of the reasons why the investigations into the macaque brain were so important. As macaques have a very similar brain to humans, scientific insights obtained on macaques can often be transferred to humans. It was thanks to the previous work on the animals that the researchers were able to interpret the MEG measurements correctly.

In their experiments, the researchers demonstrate that the human brain also uses different frequency ranges for bottom-up and top-down signalling. Furthermore, the neurophysiologists were able to describe the hierarchical positioning of additional areas, some of which only present in the human brain. A total of 26 areas were investigated in the human brain.

The new findings might help us to better understand the causes of some psychiatric illnesses to one day be able to treat them. In some mental illnesses, the top-down and bottom-up flow seem to get mixed up. There are indications that in individuals with schizophrenia, the top-down flow does not interact with the bottom-up flow in a normal way. “A healthy person can distinguish between sensory inputs and their interpretation produced in higher areas. For example, they can see facial features in a cloud without thinking that the cloud is a face. Schizophrenic patients may think the face is real, potentially taking the top-down interpretation for a bottom-up sensation,” explains Fries.

The study was published in the journal Neuron.

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

The fading affect bias impacts most memories — but election-related memories are surprisingly resilient
Memory

Scientists shed light on how forgiveness does and doesn’t reshape memories

June 20, 2025

A new study suggests that forgiving someone does not make us forget what they did—but it does change how we feel about it. People who forgave recalled past wrongs with just as much detail, but with less emotional pain.

Read moreDetails
Tree-covered neighborhoods linked to lower ADHD risk in children
Cognitive Science

Scientists demonstrate superior cognitive benefits of outdoor vs indoor physical activity

June 18, 2025

A new study suggests that where kids exercise matters: children who played basketball outside showed sharper thinking and faster reaction times than when playing indoors, hinting at a powerful brain-boosting synergy between physical activity and nature.

Read moreDetails
Scientists uncover biological pathway that could revolutionize anxiety treatment
Cognitive Science

Different parts of the same neuron learn in different ways, study finds

June 16, 2025

Researchers have discovered that apical and basal dendrites of the same neuron use different strategies to learn, suggesting neurons adapt more flexibly than previously thought. The findings help explain how the brain fine-tunes its wiring during learning.

Read moreDetails
Poor sleep may shrink brain regions vulnerable to Alzheimer’s disease, study suggests
Memory

Neuroscientists discover biological mechanism that helps the brain ignore irrelevant information

June 14, 2025

New research suggests the brain uses a learning rule at inhibitory synapses to block out distractions during memory replay. This process enables the hippocampus to prioritize useful patterns over random noise, helping build more generalizable and reliable memories.

Read moreDetails
Brain boost from pecans? New study finds short-term cognitive benefits
Cognitive Science

Brain boost from pecans? New study finds short-term cognitive benefits

June 12, 2025

A new study published in Nutritional Neuroscience found that a pecan-enriched shake improved memory and attention in healthy young adults. Participants performed better on 8 of 23 cognitive tests after consuming pecans compared to a calorie-matched shake.

Read moreDetails
Democrats dislike Republicans more than Republicans dislike Democrats, studies find
Cognitive Science

New neuroscience study reveals sex-specific brain responses to threat

June 11, 2025

A new study shows that male and female mice engage distinct brain circuits when responding to threat, challenging the assumption that similar behavior reflects identical brain function. The findings highlight the need for sex-inclusive neuroscience research.

Read moreDetails
HIIT workouts outshine others in boosting memory and brain health, new study finds
Cognitive Science

Mega-study shows exercise boosts cognitive functioning across all ages and health conditions

June 11, 2025

From children to older adults, exercise enhances brainpower. A sweeping new analysis shows that physical activity improves general cognition, memory, and executive function in both healthy and clinical populations, reinforcing its value for mental sharpness at any age.

Read moreDetails
Democrats dislike Republicans more than Republicans dislike Democrats, studies find
Memory

Reduced memory specificity linked to earlier onset of psychiatric disorders in youth

June 11, 2025

New research suggests that difficulty recalling specific personal memories may be an early warning sign of mental illness in youth. A meta-analysis finds this memory trait predicts first-time psychiatric diagnoses, especially depression, during adolescence and early adulthood.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

New neuroscience research reveals brain antioxidant deficit in depression

Scientists uncover kidney-to-brain route for Parkinson’s-related protein spread

Scientists reveal a surprising link between depression and microbes in your mouth

New study sheds light on the psychological roots of collective violence

Experienced FPS gamers show faster, more efficient eye movements during aiming tasks, study finds

Study links moderate awe in psychedelic ayahuasca journeys to better well-being

Dementia: Tactile decline may signal early cognitive impairment

Adults’ beliefs about children and race shift when a child’s race is specified, study finds

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy