Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Unravelling the mysteries of sleep: How the brain ‘sees’ dreams

by The Conversation
August 12, 2015
in Cognitive Science
Photo credit: David Goehring

Photo credit: David Goehring

Share on TwitterShare on Facebook
Stay on top of the latest psychology findings: Subscribe now!

We’ve known for some time that our eyes move around during the dreaming phase of sleep, much like when we’re awake and looking at a visual scene. The phase of sleep is called rapid eye movement sleep, or REM sleep.

New research, published today in the journal Nature Communications, shows brain activity during the dreaming phase of sleep is remarkably similar to brain activity when we’re awake and processing new visual images, suggesting the brain “sees” dreams.

While researchers have suspected this may be the case, it’s the first time investigators have been able to record brain activity from within the brain.

A quick history of dream research

Dreams and their purpose have been one of the enduring mysteries of sleep. Early dream theorists, such as Sigmund Freud, argued that the function of dreaming was to preserve sleep by expressing unfulfilled desires or wishes in the unconscious state.

More recently, researchers have investigated the function and processes of sleep and dreams by measuring the physiological signals that characterise this state of consciousness.

Just over 60 years ago, American sleep researcher Eugene Aserinsky stumbled across rapid eye movements during sleep almost accidentally, during an overnight sleep study recording of his eight-year-old son. His seminal 1953 paper reported “rapid, jerky and binocularly symmetrical” eye movements during periods of sleep.

These eye movements were also associated with increased brain activity, thus discounting the idea that sleep is a completely passive phenomenon. During REM sleep, our brains are active and behave similarly to wakefulness or light sleep. But muscle activity is suppressed so we can’t physically carry out our dreams.

In a pioneering 1957 paper, American researchers William Dement and Nathaniel Kleitman examined the relationship between eye movements and dream content. They woke participants during REM sleep and asked them to describe their dream. The researchers then looked at how their dream description related to the type of eye movements they were experiencing at the time (vertical, horizontal, or a mix of both).

Participants who were woken after a series of vertical movements reported “climbing up a ladder”, and “standing at the bottom of the cliff operating a hoist and looking up at climbers”, whereas one participant who was woken after horizontal eye movements reported dreaming about “two people throwing tomatoes at each other”. In contrast, those who had mixed eye movements tended to be watching people close to them with no description of distance or vertical vision.

Since this study, the evidence for this association between the REMs and dream content is not consistent. Individuals who have been blind from birth, for instance, have REMs but no visual dream content.

But in support of Dement’s finding, a recent study in patients with REM behaviour disorder (where people act out their dreams due to a lack of muscle paralysis), found a strong association between goal-oriented limb and head action and eye gaze direction during REM sleep.

Brain activity during sleep

In everyday life, when we see things, our eyes and brain behave in characteristic ways to gather and process the information in our visual field and give it meaning. But the function of eye movements during sleep and dreaming are relatively unknown. Today’s Nature Communication paper provides some insights.

Usually, brain activity is measured non-invasively from the scalp. But the investigators, from Tel Aviv University, recorded the activity of the brain, from within the brain, in patients with epilepsy.

Patients whose epilepsy cannot be controlled with medication have electrodes surgically placed within the brain as a clinical means to map their epileptic activity, and assess suitability for surgery as a treatment. These electrodes were implanted in the medial temporal lobe – a region that is associated with visual awareness.

Researchers compared brain activity of these patients across three settings: REM sleep brain activity, wakeful eye movements in darkness (no visual processing) and wakeful fixed-gaze visual processing (no eye movements). They wanted to test whether brain behaviour during sleep was more closely related to physical movement, or the processing of visual information.

Results showed that during rapid eye movements in sleep, the brain activity was more closely related to the brain activity during visual processing during wakefulness (without movement) than physical movements of the eyes in darkness where no visual processing was taking place.

These results suggest that the rapid eye movements that occur in sleep are linked to visual processing rather than just physical activation or movement. So, the participants may have actually been looking at a dream image, rather than these eye movements simply reflecting motor discharge in the brain.

While much remains unknown, this detailed processing of our dream images suggests that rapid eye movements may actually modulate our brain activity during sleep. We know that sleep is needed for rest and rejuvenation, but it’s likely to have other important functions as well.

In line with the earliest of theories about why we dream, are we processing content that has been consciously or unconsciously avoided during wakefulness, but somehow “needs” to be dealt with at least during sleep to maintain our psychological well-being?

Are the eye movements a simple byproduct of the visual processing that occurs of the images we dream?

Is there a psychological basis to why we need to process these images during sleep, and does this lend to better psychological outcomes in a similar way to sleep aiding physical functioning?

These and many questions drive the ongoing research into why we sleep, and what its precise benefits are.

The Conversation

By Melinda Jackson, RMIT University and Rachel Schembri, RMIT University

Melinda Jackson is Senior Research Fellow in the School of Health Sciences at RMIT University.
Rachel Schembri is Post-doctoral research fellow, School of Health Sciences at RMIT University.

This article was originally published on The Conversation. Read the original article.

TweetSendScanShareSendPinShareShareShareShareShare

RELATED

From fireflies to brain cells: Unraveling the complex web of synchrony in networks
Addiction

Understanding “neuronal ensembles” could revolutionize addiction treatment

July 3, 2025

The same brain system that rewards you for a delicious meal is hijacked by drugs like fentanyl. A behavioral neuroscientist explains how understanding the specific memories behind these rewards is the key to treating addiction without harming our essential survival instincts.

Read moreDetails
Scientists just uncovered a surprising illusion in how we remember time
Memory

Scientists just uncovered a surprising illusion in how we remember time

July 3, 2025

Our perception of time is more fragile than we think. Scientists have uncovered a powerful illusion where repeated exposure to information makes us misremember it as happening much further in the past, significantly distorting our mental timelines.

Read moreDetails
Peppermint tea boosts memory and attention—but why?
Cognitive Science

Peppermint tea boosts memory and attention—but why?

July 2, 2025

Can a cup of peppermint tea sharpen your mind? A new study suggests it can—but not in the way scientists expected. Improved memory and attention followed the tea, but increased brain blood flow wasn't the reason why.

Read moreDetails
Scientists reveal ChatGPT’s left-wing bias — and how to “jailbreak” it
Artificial Intelligence

ChatGPT and “cognitive debt”: New study suggests AI might be hurting your brain’s ability to think

July 1, 2025

Researchers at MIT investigated how writing with ChatGPT affects brain activity and recall. Their findings indicate that reliance on AI may lead to reduced mental engagement, prompting concerns about cognitive “offloading” and its implications for education.

Read moreDetails
New psychology study sheds light on mysterious “feelings of presence” during isolation
Cognitive Science

Vagus nerve signals influence food intake more in higher socio-economic groups

July 1, 2025

Researchers have found that internal physiological cues—like signals from the vagus nerve—play a stronger role in guiding eating behavior among wealthier individuals, offering new insight into why socio-economic status is linked to differences in diet and health.

Read moreDetails
Researchers identify neural mechanism behind memory prioritization
Memory

Researchers identify neural mechanism behind memory prioritization

June 30, 2025

A new brain imaging study shows that when people try to remember multiple things, their brains give more precise attention to the most important item. The frontal cortex helps allocate memory resources, boosting accuracy for high-priority information.

Read moreDetails
Scientists show how you’re unknowingly sealing yourself in an information bubble
Cognitive Science

Scientists show how you’re unknowingly sealing yourself in an information bubble

June 29, 2025

Scientists have found that belief polarization doesn’t always come from misinformation or social media bubbles. Instead, it often begins with a simple search. Our choice of words—and the algorithm’s response—can subtly seal us inside our own informational comfort zones.

Read moreDetails
Muscle contractions release chemical signals that promote brain network development
Memory

Sleep helps stitch memories into cognitive maps, according to new neuroscience breakthrough

June 28, 2025

Scientists have discovered that forming a mental map of a new environment takes more than just recognizing individual places—it also requires sleep. The study highlights how weakly tuned neurons gradually become synchronized to encode space as a connected whole.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Hispanic adolescents experience later sleep timing and greater social jet lag than peers, study finds

Student loan debt doesn’t deter civic engagement — it may actually drive it, new research suggests

Understanding “neuronal ensembles” could revolutionize addiction treatment

Not bothered by celebrity infidelity? This psychological trait might be why

Genetic factors may influence how well exercise buffers against childhood trauma

Tips for parents in talking with your kids about your partner’s mental illness

Subjective cognitive struggles strongly linked to social recovery in depression

New research suggests the conservative mental health advantage is a myth

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy