Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Sleep

Brain connections reset during first half of sleep

by Eric W. Dolan
June 4, 2024
in Sleep
The head and the beginning portion of a young zebrafish's body, seen from the top (with the eyes to the left), featuring neurons (appearing as white dots) that transmit signals to the spinal cord, orchestrating the movement of the body. (Credit: NIH Image Gallery/Richard Roberts)

The head and the beginning portion of a young zebrafish's body, seen from the top (with the eyes to the left), featuring neurons (appearing as white dots) that transmit signals to the spinal cord, orchestrating the movement of the body. (Credit: NIH Image Gallery/Richard Roberts)

Share on TwitterShare on Facebook

A recent study has provided new insights into the complex role of sleep in brain function. Conducted on zebrafish, the research revealed that during the first half of a night’s sleep, the brain weakens the new connections between neurons formed while awake. However, this process does not continue into the second half of the night, leaving open questions about the latter stage’s purpose. Published in the journal Nature, the study supports the Synaptic Homeostasis Hypothesis, which suggests sleep serves as a reset for the brain.

The exact function of sleep has long puzzled scientists. While it is known that sleep is crucial for cognitive performance, its precise role at the neuronal level remains unclear. One prevailing theory is the Synaptic Homeostasis Hypothesis, which posits that sleep helps balance the strengthening and weakening of synapses (connections between neurons) that occur during waking hours. This balance is essential because continuous strengthening of synapses would be energetically unsustainable and could impede the formation of new connections needed for learning. The researchers aimed to test this hypothesis by observing the synaptic changes that occur during sleep in zebrafish.

To explore these changes, researchers used optically translucent zebrafish with genetically modified brains that allowed easy imaging of synapses. They monitored the fish over several sleep-wake cycles to observe how synaptic connections evolved. Specifically, they tracked the changes in synapse numbers and strengths across different phases of the day and night.

The zebrafish were chosen for their transparency, which enabled detailed imaging of brain structures. The researchers used a synapse labelling system that highlights synaptic proteins, allowing them to visualize the connections between neurons in real-time. They then subjected the fish to varying sleep conditions, including sleep deprivation, to see how these conditions affected synapse dynamics.

The study found that during waking hours, brain cells gained more connections, which were then pruned during sleep. This pruning was more pronounced during the first half of the night. This pattern aligns with the period of slow-wave sleep, which is known to be more intense at the beginning of the night. When the fish were deprived of sleep, their synaptic connections continued to grow until they were finally allowed to rest, after which pruning resumed.

“Our findings add weight to the theory that sleep serves to dampen connections within the brain, preparing for more learning and new connections again the next day,” explained first author Anya Suppermpool, a postdoctoral researcher in the Andres lab at UCL Ear Institute. “But our study doesn’t tell us anything about what happens in the second half of the night. There are other theories around sleep being a time for clearance of waste in the brain, or repair for damaged cells – perhaps other functions kick in for the second half of the night.”

Interestingly, the study noted that this synaptic pruning was less effective during shorter, mid-day naps, likely due to lower sleep pressure (the body’s need for sleep). This suggests that the benefits of sleep on synapse pruning are more significant during longer, nightly sleep periods when sleep pressure is higher.

The researchers also found variability in synaptic changes among different types of neurons. Some neurons showed a consistent pattern of synapse gain during the day and loss at night, while others displayed the opposite pattern. This variability suggests that different neuron types might have distinct roles or regulatory mechanisms during sleep.

University College London professor Jason Rihel said: “When we are awake, the connections between brain cells get stronger and more complex. If this activity were to continue unabated, it would be energetically unsustainable. Too many active connections between brain cells could prevent new connections from being made the following day.

“While the function of sleep remains mysterious, it may be serving as an ‘off-line’ period when those connections can be weakened across the brain, in preparation for us to learn new things the following day.”

While these findings provide valuable insights, it is not certain that they directly apply to humans. Human sleep is more complex, and the functions of different sleep stages may vary.

Additionally, the study focused primarily on the early stages of sleep and did not provide conclusive insights into what happens during the latter half of the night. The researchers suggest that other functions, such as clearing waste from the brain or repairing damaged cells, might be more active during this period. Further research is needed to explore these possibilities.

Future studies should also investigate the molecular mechanisms that drive synaptic pruning during sleep. Understanding these mechanisms could provide deeper insights into how sleep contributes to learning and memory. Moreover, examining how different types of neurons and brain regions are affected by sleep could help elucidate the broader role of sleep in brain function.

“If the patterns we observed hold true in humans, our findings suggest that this remodelling of synapses might be less effective during a mid-day nap, when sleep pressure is still low, rather than at night, when we really need the sleep,” Rihel said.

The study, “Sleep pressure modulates single-neuron synapse number in zebrafish,” was authored by Anya Suppermpool, Declan G. Lyons, Elizabeth Broom, and Jason Rihel.

RELATED

Sleep disorders associated with higher risk of dementia, study finds
Dementia

Severe sleep problems is associated with fewer years of healthy brain function

January 23, 2026
Sleep problems act as a mediator between chronic disease and depression
Dark Triad

Maladaptive personality traits are linked to poor sleep quality in new twin study

January 21, 2026
Loneliness is associated with a 31% higher risk of developing dementia, finds largest study to date
Dementia

Fragmented sleep predicts slower mental processing speed the next day in older adults

January 13, 2026
Psilocybin-assisted group therapy may help reduce depression and burnout among healthcare workers
Neuroimaging

Two-hour naps during night shifts may restore brain function and memory in nurses

December 31, 2025
New psychology research flips the script on happiness and self-control
Memory

Deep sleep reorganizes brain networks used for memory recall

December 16, 2025
Paternal psychological strengths linked to lower maternal inflammation in married couples
Neuroimaging

Disrupted sleep might stop the brain from flushing out toxic waste

December 15, 2025
Higher diet quality is associated with greater cognitive reserve in midlife
Sleep

Pre-workout supplements linked to dangerously short sleep in young people

December 12, 2025
Humans have an internal lunar clock, but we are accidentally destroying it
Cognitive Science

Humans have an internal lunar clock, but we are accidentally destroying it

December 10, 2025

PsyPost Merch

STAY CONNECTED

LATEST

High body mass index identified as a direct cause of vascular dementia

New research reveals the policy recall gap that gave Donald Trump a hidden edge

Borderline personality traits are associated with reduced coordination during a finger-tapping task

Your brain being “in sync” with others may protect against trauma, new neuroscience research suggests

Machine learning identifies brain patterns that predict antidepressant success

New psychology research finds romantic cues reduce self-control and increase risky behavior

Imposter syndrome is strongly linked to these two types of perfectionism

Free-choice and arranged marriages do not differ in their love scores, study finds

RSS Psychology of Selling

  • New research links faking emotions to higher turnover in B2B sales
  • How defending your opinion changes your confidence
  • The science behind why accessibility drives revenue in the fashion sector
  • How AI and political ideology intersect in the market for sensitive products
  • Researchers track how online shopping is related to stress
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy