Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health Dementia

Genetic breakthroughs offer new hope in the battle against frontotemporal dementia

by Fen-Biao Gao
February 24, 2024
in Dementia
(Photo credit: Adobe Stock)

(Photo credit: Adobe Stock)

Share on TwitterShare on Facebook

Around 55 million people worldwide suffer from dementia such as Alzheimer’s disease. On Feb. 22, 2024, it was revealed that former talk show host Wendy Williams had been diagnosed with frontotemporal dementia, or FTD, a rare type of dementia that typically affects people ages 45 to 64. Bruce Willis is another celebrity who was diagnosed with the syndrome, according to his family. In contrast to Alzheimer’s, in which the major initial symptom is memory loss, FTD typically involves changes in behavior.

The initial symptoms of FTD may include changes in personality, behavior and language production. For instance, some FTD patients exhibit inappropriate social behavior, impulsivity and loss of empathy. Others struggle to find words and to express themselves. This insidious disease can be especially hard for families and loved ones to deal with. There is no cure for FTD, and there are no effective treatments.

Up to 40% of FTD cases have some family history, which means a genetic cause may run in the family. Since researchers identified the first genetic mutations that cause FTD in 1998, more than a dozen genes have been linked to the disease. These discoveries provide an entry point to determine the mechanisms that underlie the dysfunction of neurons and neural circuits in the brain and to use that knowledge to explore potential approaches to treatment.

I am a researcher who studies the development of FTD and related disorders, including the motor neuron disease amyotrophic lateral sclerosis, or ALS. ALS, also known as Lou Gehrig’s disease, results in progressive muscle weakness and death. Uncovering the similarities in pathology and genetics between FTD and ALS could lead to new ways to treat both diseases.

Genetic causes of FTD

Genes contain the instructions cells use to make the proteins that carry out functions essential to life. Mutated genes can result in mutated proteins that lose their normal function or become toxic.

How mutated proteins contribute to FTD has been under intense investigation for decades. For instance, one of the key proteins in FTD, called tau, helps stabilize certain structures in neurons and can form clumps in diseased brains. Another key protein, progranulin, regulates cell growth and a part of the cell called the lysosome that breaks down cellular waste products.

Remarkably, the most common genetic mutation in FTD – in a gene called C9orf72 – also causes ALS. In fact, apart from the mutations in genes that encode for tau and progranulin, most genetic mutations that cause FTD also cause ALS. Another protein, TDP-43, forms clumps in the brains of over 95% of ALS cases and almost half of FTD cases. Thus, these disorders share close links in genetics and pathology.

Modifier genes

The same genetic mutation can cause FTD in one patient, ALS in another or symptoms of both FTD and ALS at the same time. Remarkably, some people who carry these genetic mutations may have no obvious symptoms for decades.

One reason the same mutation can cause both FTD and ALS is that, in addition to lifestyle and environmental factors, other genes may also influence whether mutated genes lead to disease. Identifying these modifier genes in FTD, ALS and other neurodegenerative diseases could lead to new treatment approaches by boosting the activity of those that protect against disease or suppressing the activity of those that promote disease.

Modifier genes have long been a focus of research in my laboratory at the University of Massachusetts Chan Medical School. When my laboratory was still in San Francisco, we collaborated with neurologist Bruce Miller and generated the first stem cell lines from FTD patients with mutations in progranulin and C9orf72. These stem cells can be turned into neurons for researchers to study in a petri dish. My team also uses fruit flies to identify modifier genes and then test how they influence disease in neurons from patients with FTD or ALS.

For instance, in close collaboration with cell biologist J. Paul Taylor, my laboratory was among the first to discover a small subset of modifier genes that help transport molecules into or out of the nucleus of a neuron. We also discovered modifier genes that encode for some proteins that help repair damaged DNA. Targeting these modifier genes using gene-silencing techniques developed by Nobel laureate Craig Mello and other researchers at UMass Chan could offer potential treatments.

Treating behavioral changes in FTD

Because the brain is an extremely complex organ, it can be very difficult to understand what causes personality and behavioral changes in FTD patients.

Over the years, my team has used mice to study the causes of these changes. For instance, we found that the reduced social interaction we observed in mice engineered to have FTD is linked to two different disease proteins in the same part of the brain, suggesting that this symptom may be caused by defects in the same neural circuit. These deficits could be reversed by injecting a molecule called microRNA-124 into the prefrontal cortex, the part of the brain that controls social behaviors.

Moreover, with my longtime collaborator neuroscientist Wei-Dong Yao, our labs found that mice with FTD have defects at the synapses in this part of the brain. Synapses are areas where neurons are in contact with each other and play an important role in transporting information in the nervous system. Recently, he found that lack of empathy in another mouse model of FTD could be reversed by increasing activity in the prefrontal cortex.

Further research to understand the molecular mechanisms and brain circuitry behind FTD offer hope that its devastating symptoms, including behavioral and personality changes, will be treatable in the future.

 

This is an updated version of an article originally published on Feb. 22, 2023.The Conversation

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

RELATED

Distinct neural pathways link fear of missing out and negative emotions to compulsive phone use
Dementia

New study links leafy greens, berries, and fish to better cognitive health

November 25, 2025
Longitudinal study of kindergarteners suggests spanking is harmful for children’s social competence
Dementia

Childhood maltreatment linked to poorer cognitive performance in young adulthood and later midlife

November 24, 2025
Researchers identify neural mechanism behind memory prioritization
Alzheimer's Disease

Semaglutide improves biomarkers but fails to preserve memory in Alzheimer’s patients

November 24, 2025
Bright medical professional examining brain MRI scans in a clinical setting for neurological or psychological research.
Dementia

Pro-inflammatory diets linked to accelerated brain aging in older adults

November 22, 2025
Social anxiety tends to be elevated among those who suffered emotional maltreatment in childhood
Dementia

Lonely children have an increased risk of dementia and cognitive decline in adulthood, study finds

November 21, 2025
New psychology research sheds light on the mystery of deja vu
Alzheimer's Disease

Increased neural flexibility may signal brain network breakdown in Alzheimer’s

November 20, 2025
Biomarkers in spinal fluid may flag frontotemporal dementia before symptoms emerge
Alzheimer's Disease

Functional imbalance of two brain networks might predict cognitive decline in Alzheimer’s disease

November 19, 2025
How you view time may influence depression by shaping your sleep rhythm
Dementia

The rhythm of your speech may offer clues to your cognitive health

November 16, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Singlehood stigma and the fear of being alone linked to more flexible dating standards

Researchers identify a potential neural pathway from childhood trauma to feelings of powerlessness

Brain structure changes may partially explain the link between screen time and ADHD

Mismatched alcohol consumption might be a warning sign for marital stability

One in eight US adolescents and young adults use AI chatbots for mental health advice

Mystical beliefs predict a meaningful life even without organized religion

Why forced gratitude might make some teens meaner online

Common acne medication linked to reduced schizophrenia risk

RSS Psychology of Selling

  • What science reveals about the Black Friday shopping frenzy
  • Research reveals a hidden trade-off in employee-first leadership
  • The hidden power of sequence in business communication
  • What so-called “nightmare traits” can tell us about who gets promoted at work
  • What 5,000 tweets reveal about the reality of Black Friday deals
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy