Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

How neurons work together: A fractal approach to brain efficiency

by Brandon Robert Munn
December 13, 2024
in Cognitive Science, Neuroimaging
[Adobe Stock]

[Adobe Stock]

Share on TwitterShare on Facebook

The brain is a marvel of efficiency, honed by thousands of years of evolution so it can adapt and thrive in a rapidly changing world. Yet, despite decades of research, the mystery of how the brain achieves this has remained elusive.

Our new research, published in the journal Cell, reveals how neurons – the cells responsible for your childhood memories, thoughts and emotions – coordinate their activity.

It’s a bit like being a worker in a high-performing business. Balancing individual skills with teamwork is key to success, but how do you achieve the balance?

As it turns out, the brain’s secret is surprisingly simple: devote no more than half (and no less than 40%) of each cell’s effort to individual tasks. Where does the rest of the effort go? Towards scalable teamwork.

And here’s the kicker: we found the exact same organisational structure across the brains of five species – from fruit flies and nematodes to zebrafish, mice and monkeys.

These species come from different branches of the tree of life that are separated by more than a billion years of evolution, suggesting we may have uncovered a fundamental principle for optimised information processing. It also offers powerful lessons for any complex system today.

The critical middle ground

Our discovery addresses a long-standing debate about the brain: do neurons act like star players (each highly specialised and efficient) or do they prioritise teamwork (ensuring the whole system works even when some elements falter)?

Answering this question has been challenging. Until recently, neuroscience tools were limited to either recording the activity of a few cells, or of several million.

It would be like trying to understand a massive company by either interviewing a handful of employees or by only receiving high-level department summaries. The critical middle ground was missing.

However, with advances in calcium imaging, we can now record signals from tens of thousands of cells simultaneously. Calcium imaging is a method that lets us watch neural activity in real time by using fluorescent sensors that light up according to calcium levels in the cell.

Applying insights from my physics training to analyse large-scale datasets, we found that brain activity unfolds according to a fractal hierarchy. Cells work together to build larger, coordinated networks, creating an organisation with each scale mirroring those above and below.

This structure answered the debate: the brain actually does both. It balances individuality and teamwork, and does so in a clever way. Roughly half of the effort goes to “personal” performance as neurons collaborate within increasingly larger networks.

The brain can rapidly adapt to change

To test whether the brain’s structure had unique advantages, we ran computational simulations, revealing that this fractal hierarchy optimises information flow across the brain.

It allows the brain to do something crucial: adapt to change. It ensures the brain operates efficiently, accomplishing tasks with minimal resources while staying resilient by maintaining function even when neurons misfire.

Whether you are navigating unfamiliar terrain or reacting to a sudden threat, your brain processes and acts on new information rapidly. Neurons continuously adjust their coordination, keeping the brain stable enough for deep thought, yet agile enough to respond to new challenges.

The multiscale organisation we found allows different strategies – or “neural codes” – to function at different scales. For instance, we found that zebrafish movement relies on many neurons working in unison. This resilient design ensures swimming continues smoothly, even in fast-changing environments.

By contrast, mouse vision adapts at the cellular scale, permitting the precision required to extract fine details from a scene. Here, if a few neurons miss key pieces of information, the entire perception can shift – like when an optical illusion tricks your brain.

Our findings reveal that this fractal coordination of neuron activity occurs across a vast evolutionary span: from vertebrates, whose last common ancestor lived 450 million years ago, to invertebrates, dating back a billion years.

This suggests brains have evolved to balance efficiency with resilience, allowing for optimised information processing and adaptability to new behavioural demands. The evolutionary persistence hints that we’ve uncovered a fundamental design principle.

A fundamental principle?

These are exciting times, as physics and neuroscience continue interacting to uncover the universal laws of the brain, crafted over aeons of natural selection. Future work will be needed to see how these principles might play out in the human brain.

Our findings also hint at something bigger: this simple rule of individual focus and scalable teamwork might not just be a solution for the brain.

When elements are organised into tiered networks, resources can be shared efficiently, and the system becomes robust against disruptions.

The best businesses operate in the same way — when a new challenge arises, individuals can react without waiting for instructions from their manager, allowing them to solve the problem while remaining supported by the organisation rapidly.

It may be a universal principle to achieve resilience and efficiency in complex systems. It appears basketball legend Michael Jordan was right when he said: “talent wins games, but teamwork and intelligence win championships”.The Conversation

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

RELATED

Harvard scientist reveals a surprising split in psychological well-being between the sexes
Cannabis

Prenatal THC exposure linked to lasting brain changes and behavioral issues

December 20, 2025
High-intensity interval training might help with premature ejaculation
Cognitive Science

How running tricks your brain into overestimating time

December 19, 2025
Stress-induced “fixated” eating patterns linked to dopamine disruption, study finds
Addiction

Scientists explain why nothing feels quite like the first time by tracking dopamine during fly sex

December 19, 2025
Generative AI simplifies science communication, boosts public trust in scientists
Artificial Intelligence

New AI system reduces the mental effort of using bionic hands

December 18, 2025
Psychology researchers identify a “burnout to extremism” pipeline
Depression

Brief computer-assisted therapy alters brain connectivity in depression

December 18, 2025
Colorful neon brain illustration representing neural activity and cognitive processes.
Neuroimaging

Scientists propose cognitive “digital twins” to monitor and protect mental health

December 18, 2025
Girl taking a selfie on her smartphone, enjoying a drink, smiling and outdoors, illustrating social media, happiness, and modern communication.
Cognitive Science

Large meta-analysis links TikTok and Instagram Reels to poorer cognitive and mental health

December 18, 2025
Brain circuits tied to depression’s “negativity effect” uncovered
ADHD

Combining brain scans and gene data improves prediction of ADHD impulsivity

December 17, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Outrage at individual bigotry may undermine support for systemic racial justice

Consumption of common mineral associated with lower risk of suicidal thoughts

Five psychological approaches to handling holiday loneliness

Study finds heavy drinking creates a blind spot for angry expressions

Researchers find reverse sexual double standard in sextech use

Prenatal THC exposure linked to lasting brain changes and behavioral issues

Harvard scientist reveals a surprising split in psychological well-being between the sexes

Egalitarians and anti-egalitarians share the same negative mental image of the poor

RSS Psychology of Selling

  • How expert persuasion impacts willingness to pay for sugar-containing products
  • Experiments in sports marketing show product fit drives endorsement success
  • Study finds consumers must be relaxed for gamified ads to drive sales
  • Brain scans reveal increased neural effort when marketing messages miss the mark
  • Mental reconnection in the morning fuels workplace proactivity
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy