Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Light color determines sleepiness versus arousal in mice, study finds

by PLoS
August 15, 2016
in Cognitive Science
Photo credit:  Josef Bischofberger

Photo credit: Josef Bischofberger

Share on TwitterShare on Facebook

Light affects sleep. A study in mice published in Open Access journal PLOS Biology shows that the actual color of light matters; blue light keeps mice awake longer while green light puts them to sleep easily. An accompanying Primer provides accessible context information and discusses open questions and potential implications for “designing the lighting of the future”.

Light shining into our eyes not only mediates vision but also has critical non-image-forming functions such as the regulation of circadian rhythm, which affects sleep and other physiological processes. As humans, light generally keeps us awake, and dark makes us sleepy. For mice, which are mostly nocturnal, light is a sleep-inducer. Previous studies in mice and humans have shown that non-image-forming light perception occurs in specific photosensitive cells in the eye and involves a light sensor called melanopsin. Mice without melanopsin show a delay in their response to fall asleep when exposed to light, pointing to a critical role for melanopsin in sleep regulation.

Stuart Peirson and Russell Foster, both from Oxford University, UK, alongside colleagues from Oxford and elsewhere, investigated this further by studying sleep induction in mice exposed to colored light, i.e., light of different wave lengths. Based on the physical properties of melanopsin, which is most sensitive to blue light, the researchers predicted that blue light would be the most potent sleep inducer.

To their surprise, that was not the case. Green light, it turns out, puts mice to sleep quickly, whereas blue light actually seems to stimulate the mice, though they did fall asleep eventually. Mice lacking melanopsin were oblivious to light color, demonstrating that the protein is directing the differential response.

Both green and blue light elevated levels of the stress hormone corticosterone in the blood of exposed mice compared with mice kept in the dark, the researchers found. Corticosterone levels in response to blue light, however, were higher than levels in mice exposed to green light. When the researchers gave the mice drugs that block the effects of corticosterone, they were able to mitigate the effects of blue light; drugged mice exposed to blue light went to sleep faster than control mice that had received placebos.

Citing previous results that exposure to blue light–a predominant component of light emitted by computer and smart-phone screens–promotes arousal and wakefulness in humans as well, the researchers suggest that “despite the differences between nocturnal and diurnal species, light may play a similar alerting role in mice as has been shown in humans”. Overall, they say their work “shows the extent to which light affects our physiology and has important implications for the design and use of artificial light sources”.

In the accompanying Primer, Patrice Bourgin, from the University of Strasbourg, France, and Jeffrey Hubbard from the University of Lausanne, Switzerland, say the study “reveals that the role of color [in controlling sleep and alertness] is far more important and complex than previously thought, and is a key parameter to take into account”. The study’s results, they say, “call for a greater understanding of melanopsin-based phototransduction and tell us that color wavelength is another aspect of environmental illumination that we should consider, in addition to photon density, duration of exposure and time of day, as we move forward in designing the lighting of the future, aiming to improve human health and well-being.”

RELATED

Distinct neural pathways link fear of missing out and negative emotions to compulsive phone use
Cognitive Science

Single session of weightlifting improves executive function and processing speed

November 25, 2025
Eye-tracking study reveals which facial features truly matter in attraction
Cognitive Science

Your body’s hidden reaction to musical rhythm involves your eyes

November 24, 2025
Study identifies creativity and resilience as positive aspects of ADHD diagnosis
Cognitive Science

Musicians possess a superior internal map of their body in space

November 22, 2025
Analysis of 45 serial killers sheds new light on the dark psychology of sexually motivated murderers
Cognitive Science

New research reveals the cognitive hurdles created by our number systems

November 21, 2025
Scientists identify a mysterious brain signal tied to stress and hormone pulses
Cognitive Science

Groundbreaking new research challenges 20-year-old theory on dopamine and obesity

November 21, 2025
Scientists identify distinct neural dynamics linked to general intelligence
Cognitive Science

Scientists identify distinct neural dynamics linked to general intelligence

November 21, 2025
Scientists discover a pet’s fascinating “afterglow effect” on romantic couples
Cognitive Science

How you bet after a win may depend on your personality and intelligence

November 20, 2025
New psychology research sheds light on the mystery of deja vu
Cognitive Science

New psychology research sheds light on the mystery of deja vu

November 20, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Common acne medication linked to reduced schizophrenia risk

How positive parenting builds grit through gratitude

Inflammation in a key dopamine hub correlates with depression severity

New study links leafy greens, berries, and fish to better cognitive health

Fundamental beliefs about the world can buffer against the psychological impact of trauma, new research suggests

Single session of weightlifting improves executive function and processing speed

Distinct neural pathways link fear of missing out and negative emotions to compulsive phone use

Your body’s hidden reaction to musical rhythm involves your eyes

RSS Psychology of Selling

  • Research reveals a hidden trade-off in employee-first leadership
  • The hidden power of sequence in business communication
  • What so-called “nightmare traits” can tell us about who gets promoted at work
  • What 5,000 tweets reveal about the reality of Black Friday deals
  • A bad mood might not hurt your work productivity as much as you think
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy