Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Light color determines sleepiness versus arousal in mice, study finds

by PLoS
August 15, 2016
in Cognitive Science
Photo credit:  Josef Bischofberger

Photo credit: Josef Bischofberger

Share on TwitterShare on Facebook

Light affects sleep. A study in mice published in Open Access journal PLOS Biology shows that the actual color of light matters; blue light keeps mice awake longer while green light puts them to sleep easily. An accompanying Primer provides accessible context information and discusses open questions and potential implications for “designing the lighting of the future”.

Light shining into our eyes not only mediates vision but also has critical non-image-forming functions such as the regulation of circadian rhythm, which affects sleep and other physiological processes. As humans, light generally keeps us awake, and dark makes us sleepy. For mice, which are mostly nocturnal, light is a sleep-inducer. Previous studies in mice and humans have shown that non-image-forming light perception occurs in specific photosensitive cells in the eye and involves a light sensor called melanopsin. Mice without melanopsin show a delay in their response to fall asleep when exposed to light, pointing to a critical role for melanopsin in sleep regulation.

Stuart Peirson and Russell Foster, both from Oxford University, UK, alongside colleagues from Oxford and elsewhere, investigated this further by studying sleep induction in mice exposed to colored light, i.e., light of different wave lengths. Based on the physical properties of melanopsin, which is most sensitive to blue light, the researchers predicted that blue light would be the most potent sleep inducer.

To their surprise, that was not the case. Green light, it turns out, puts mice to sleep quickly, whereas blue light actually seems to stimulate the mice, though they did fall asleep eventually. Mice lacking melanopsin were oblivious to light color, demonstrating that the protein is directing the differential response.

Both green and blue light elevated levels of the stress hormone corticosterone in the blood of exposed mice compared with mice kept in the dark, the researchers found. Corticosterone levels in response to blue light, however, were higher than levels in mice exposed to green light. When the researchers gave the mice drugs that block the effects of corticosterone, they were able to mitigate the effects of blue light; drugged mice exposed to blue light went to sleep faster than control mice that had received placebos.

Citing previous results that exposure to blue light–a predominant component of light emitted by computer and smart-phone screens–promotes arousal and wakefulness in humans as well, the researchers suggest that “despite the differences between nocturnal and diurnal species, light may play a similar alerting role in mice as has been shown in humans”. Overall, they say their work “shows the extent to which light affects our physiology and has important implications for the design and use of artificial light sources”.

In the accompanying Primer, Patrice Bourgin, from the University of Strasbourg, France, and Jeffrey Hubbard from the University of Lausanne, Switzerland, say the study “reveals that the role of color [in controlling sleep and alertness] is far more important and complex than previously thought, and is a key parameter to take into account”. The study’s results, they say, “call for a greater understanding of melanopsin-based phototransduction and tell us that color wavelength is another aspect of environmental illumination that we should consider, in addition to photon density, duration of exposure and time of day, as we move forward in designing the lighting of the future, aiming to improve human health and well-being.”

Google News Preferences Add PsyPost to your preferred sources

RELATED

Stanford scientist discovers that AI has developed an uncanny human-like ability
Artificial Intelligence

The scientist who predicted AI psychosis has issued another dire warning

February 7, 2026
Sorting Hat research: What does your Hogwarts house say about your psychological makeup?
Cognitive Science

Scientists just mapped the brain architecture that underlies human intelligence

February 6, 2026
A new experiment reveals an unexpected shift in how pregnant women handle intimidation
Cognitive Science

A high-sugar breakfast may trigger a “rest and digest” state that dampens cognitive focus

February 5, 2026
One specific reason for having sex is associated with higher stress levels the next day
Cognitive Science

A high-salt diet triggers inflammation and memory loss by altering the microbiome

February 4, 2026
Data from 560,000 students reveals a disturbing mental health shift after 2016
Cognitive Science

The neural path from genes to intelligence looks different depending on your age

February 2, 2026
Psychology researchers identify a “burnout to extremism” pipeline
Cognitive Science

Speaking multiple languages appears to keep the brain younger for longer

February 1, 2026
Novel essential oil blend may enhance memory and alertness
Cognitive Science

Novel essential oil blend may enhance memory and alertness

January 30, 2026
Traumatic brain injury may steer Alzheimer’s pathology down a different path
Cognitive Science

New maps of brain activity challenge century-old anatomical boundaries

January 29, 2026

PsyPost Merch

STAY CONNECTED

LATEST

Evolutionary psychology’s “macho” face ratio theory has a major flaw

Reduction in PTSD symptoms linked to better cognitive performance in new study of veterans

Scientists reveal the alien logic of AI: hyper-rational but stumped by simple concepts

Self-kindness leads to a psychologically rich life for teenagers, new research suggests

Borderline personality disorder in youth linked to altered brain activation during self-identity processing

Biological sex influences how blood markers reflect Alzheimer’s severity

The surprising way the brain’s dopamine-rich reward center adapts as a romance matures

The scientist who predicted AI psychosis has issued another dire warning

RSS Psychology of Selling

  • Sales agents often stay for autonomy rather than financial rewards
  • The economics of emotion: Reassessing the link between happiness and spending
  • Surprising link found between greed and poor work results among salespeople
  • Intrinsic motivation drives sales performance better than financial rewards
  • New research links faking emotions to higher turnover in B2B sales
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy