Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

Neuroscience sheds light on brain mechanisms underlying exceptional creativity

by Eric W. Dolan
September 12, 2024
in Cognitive Science, Neuroimaging
(Photo credit: DALL·E)

(Photo credit: DALL·E)

Share on TwitterShare on Facebook
Don't miss out! Follow PsyPost on Bluesky!

A new study sheds light on how highly creative individuals, such as visual artists and scientists, may have brains that function differently compared to others. The research, published in Psychology of Aesthetics, Creativity, and the Arts, reveals that people who exhibit exceptional creativity—referred to as “Big C” creative individuals—demonstrate more random patterns of connectivity in their brains. By using functional MRI (fMRI) technology, the researchers observed that highly creative brains bypass typical neural hubs, making distant connections between different regions of the brain more quickly and efficiently.

The purpose of the study was to explore the biological foundations of exceptional creativity. Despite over seventy years of research on creative achievement, there has been limited data to support the biological mechanisms that differentiate highly creative individuals from others. Most studies of brain function in creativity have focused on everyday or professional-level creativity.

However, few have investigated what happens in the brains of those who make transformative, world-changing contributions in the arts and sciences—people often referred to as “Big C” creative types. These individuals are not only distinguished by their high levels of creative achievement but also by their ability to think in novel and non-linear ways.

The new study sought to fill the gap in understanding how the brains of these exceptional individuals work differently from both typical people and those who are merely highly intelligent. The researchers were specifically interested in how brain regions responsible for creativity, problem-solving, and artistic or scientific invention interact during tasks that demand creative thinking.

“I became interested in the topic of creativity because creativity is elusive,” said study author Ariana Anderson, an assistant research professor at the Semel Institute for Neuroscience and Human Behavior at UCLA. “People can be highly creative without being highly educated, yet most studies of creativity have compared highly intelligent and creative individuals with ‘garden variety’ average people.”

“This confound suggests that the studies might be identifying what makes some individuals more clever than others, but not necessarily more creative. Our study compared creative people, who tend to be smarter than average, with garden variety smart people with equal intelligence.”

To investigate the neural basis of exceptional creativity, the research team recruited highly creative visual artists and scientists, as well as a comparison group of individuals matched for intelligence but not necessarily known for creative accomplishments. The study’s sample consisted of 66 participants: 21 Big C visual artists, 21 Big C scientists, and 24 “smart” individuals from the general population who served as a control group.

Each participant underwent brain scanning using fMRI technology, which measures brain activity by detecting changes in blood flow. The researchers captured brain connectivity both while participants were at rest and while they completed tasks designed to test their creative thinking. These tasks included:

  1. The Alternative Uses Test, which required participants to think of as many different uses as possible for a common object (for example, an umbrella).
  2. The Remote Associates Test, which presented three seemingly unrelated words and asked participants to find a fourth word that connected them (for example, the word “horse” connects the words “sea,” “rocking,” and “shoe”).

The researchers used a mathematical approach called graph theory to analyze the brain’s connectivity patterns. In this context, the brain’s regions were treated as “nodes,” and the connections between them as “edges.” The goal was to see how efficiently information flowed through these networks and whether Big C individuals exhibited distinct connectivity patterns compared to the control group.

During the resting-state scans, when participants were not engaged in any specific task, the Big C individuals showed more random patterns of brain connectivity compared to the control group. Specifically, they exhibited less “small-worldness”, a feature of brain networks that indicates an efficient balance between local and global connections. Instead of maintaining a highly organized structure, their brains displayed less clustering of connections between nearby regions, with more randomness overall.

However, locally, the creative individuals had increased clustering and efficiency, meaning certain brain areas were more specialized or active at rest. This suggests that while their overall brain network was more random, specific regions were more densely connected, potentially preparing them for creative thinking.

During the Alternative Uses Test, the Big C individuals had lower local efficiency and clustering compared to the control group. In other words, their brain activity was less organized and efficient while performing the task, which aligns with the idea that their brains may function in a more exploratory and less constrained manner during creative tasks. This reduced local connectivity suggests that, instead of focusing on specific brain regions, the creative individuals’ brains may adopt a more flexible approach, allowing for the generation of diverse and novel ideas.

“Our study found that creative individuals exhibited more random connectivity in their brains,” Anderson told PsyPost. “This suggests that to be creative, we need to focus less and relax more. However, relaxing doesn’t mean watching TikTok—it means resting our brains so they can generate their own internal content, rather than being influenced by external sources. In fact, our study showed the greatest differences in brain activity when creative individuals were doing nothing—not when they were actively trying to be creative or clever. Mind-wandering can be the optimal time for our creative brains to shine.”

Interestingly, no significant differences in brain connectivity were found during the Remote Associates Test. The lack of differences during this task suggests that while the Big C individuals excel in making broad, random connections during divergent thinking, their brain connectivity during tasks that require finding one correct solution may be similar to that of non-creative individuals.

“The creative group did not show significant differences in verbal word-play tasks compared to the IQ-matched group,” Anderson explained. “For example, if given the words ‘house, horse, dragon,’ both a creative and non-creative person would display similar brain activity when identifying the common word that links them (‘fly’).”

Despite these intriguing findings, the study has some limitations. One challenge in studying exceptional creativity is that it is difficult to recruit large samples of individuals who have achieved such high levels of success in their fields. As a result, the sample size in this study was relatively small, which limits the ability to detect more subtle differences between groups.

“Major caveats of our study include that we compared individuals already well-known for their creativity,” Anderson noted. “It doesn’t address the question of what makes some people highly creative, nor whether creativity is an inherent trait, or something that can be acquired or diminished. Many studies have shown that creativity rapidly diminishes in early childhood, so it’s crucial to explore how cultural shifts in parenting and screen time may be stifling the creative potential of children.”

“My long-term goals for this research are to determine how we can foster creativity in children. Do we become more creative through exposure to the arts or nature, or do we merely learn to mimic others’ styles, thus limiting originality? How does screen time affect children’s ability to generate new ideas, given that they are constantly exposed to repetitive content?”

“A 2019 study showed that today’s children are much less creative than previous generations of children,” Anderson added. “With post-COVID education being highly dependent on screens, it’s likely this trend is worsening. This will inevitably result in decreased innovation from future generations, which could have economic consequences.”

The study, “Big-C Creativity in Artists and Scientists is Associated With More Random Global but Less Random Local fMRI Functional Connectivity,” was authored by Ariana Anderson, Kevin Japardi, Kendra S. Knudsen, Susan Y. Bookheimer, Dara G. Ghahremani, and Robert M. Bilder.

TweetSendScanShareSendPin10ShareShareShareShareShare

RELATED

From fireflies to brain cells: Unraveling the complex web of synchrony in networks
Addiction

Understanding “neuronal ensembles” could revolutionize addiction treatment

July 3, 2025

The same brain system that rewards you for a delicious meal is hijacked by drugs like fentanyl. A behavioral neuroscientist explains how understanding the specific memories behind these rewards is the key to treating addiction without harming our essential survival instincts.

Read moreDetails
Scientists just uncovered a surprising illusion in how we remember time
Memory

Scientists just uncovered a surprising illusion in how we remember time

July 3, 2025

Our perception of time is more fragile than we think. Scientists have uncovered a powerful illusion where repeated exposure to information makes us misremember it as happening much further in the past, significantly distorting our mental timelines.

Read moreDetails
Psychedelic compound blurs boundary between self and others in the brain, study finds
Mental Health

New brain stimulation method shows promise for treating mood, anxiety, and trauma disorders

July 2, 2025

Focused ultrasound targeting the amygdala safely reduced emotional brain reactivity and improved symptoms of depression, anxiety, and trauma disorders, suggesting it may be a promising new treatment for conditions that don’t respond to existing therapies.

Read moreDetails
Peppermint tea boosts memory and attention—but why?
Cognitive Science

Peppermint tea boosts memory and attention—but why?

July 2, 2025

Can a cup of peppermint tea sharpen your mind? A new study suggests it can—but not in the way scientists expected. Improved memory and attention followed the tea, but increased brain blood flow wasn't the reason why.

Read moreDetails
Psychedelic compound blurs boundary between self and others in the brain, study finds
Ayahuasca

Psychedelic compound blurs boundary between self and others in the brain, study finds

July 2, 2025

A recent study found that a DMT/harmine formulation blurs the brain’s distinction between self and other faces, disrupting self-referential processing while preserving recognition of familiar faces, suggesting a neural basis for psychedelic-induced ego dissolution.

Read moreDetails
Scientists uncover previously unknown target of alcohol in the brain: the TMEM132B-GABAA receptor complex
Dementia

Could creatine slow cognitive decline? Mouse study reveals promising effects on brain aging

July 1, 2025

A new study shows that creatine supplementation can restore memory, reduce brain damage, and boost energy metabolism in aging mice. The findings suggest creatine may offer a simple dietary approach to protect against age-related cognitive decline.

Read moreDetails
Scientists reveal ChatGPT’s left-wing bias — and how to “jailbreak” it
Artificial Intelligence

ChatGPT and “cognitive debt”: New study suggests AI might be hurting your brain’s ability to think

July 1, 2025

Researchers at MIT investigated how writing with ChatGPT affects brain activity and recall. Their findings indicate that reliance on AI may lead to reduced mental engagement, prompting concerns about cognitive “offloading” and its implications for education.

Read moreDetails
New psychology study sheds light on mysterious “feelings of presence” during isolation
Cognitive Science

Vagus nerve signals influence food intake more in higher socio-economic groups

July 1, 2025

Researchers have found that internal physiological cues—like signals from the vagus nerve—play a stronger role in guiding eating behavior among wealthier individuals, offering new insight into why socio-economic status is linked to differences in diet and health.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Hispanic adolescents experience later sleep timing and greater social jet lag than peers, study finds

Student loan debt doesn’t deter civic engagement — it may actually drive it, new research suggests

Understanding “neuronal ensembles” could revolutionize addiction treatment

Not bothered by celebrity infidelity? This psychological trait might be why

Genetic factors may influence how well exercise buffers against childhood trauma

Tips for parents in talking with your kids about your partner’s mental illness

Subjective cognitive struggles strongly linked to social recovery in depression

New research suggests the conservative mental health advantage is a myth

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy