Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health Dementia Alzheimer's Disease

Neuroscientists just turned a major Alzheimer’s theory on its head

Aβ42 restoration: A potential paradigm shift in Alzheimer’s treatment?

by Eric W. Dolan
December 9, 2024
in Alzheimer's Disease, Neuroimaging
(Photo credit: Adobe Stock)

(Photo credit: Adobe Stock)

Share on TwitterShare on Facebook
Stay informed on the latest psychology and neuroscience research—follow PsyPost on LinkedIn for daily updates and insights.

A recent study published in Brain challenges long-held assumptions about Alzheimer’s disease treatment. Researchers at the University of Cincinnati found that new monoclonal antibody drugs may slow cognitive decline by increasing levels of a critical brain protein called amyloid-beta 42 (Aβ42), rather than simply reducing amyloid plaques in the brain. This discovery shifts the focus from plaque buildup to the potential role of Aβ42 in maintaining brain health.

Alzheimer’s disease is the most common form of dementia, characterized by progressive memory loss, cognitive decline, and changes in behavior. The condition gradually impairs daily functioning and quality of life, affecting millions of people worldwide. At a biological level, Alzheimer’s is marked by two main features: the buildup of amyloid plaques outside neurons and neurofibrillary tangles of tau protein inside neurons.

Amyloid-beta is a protein fragment naturally produced in the brain during normal cell processes. It exists in several forms, but two variants, Aβ40 and Aβ42, are of particular interest in Alzheimer’s research. Aβ40 is the more common form, comprising about 90% of all amyloid-beta produced and considered relatively benign under normal conditions. Aβ42, although less abundant, is more prone to clumping and forming plaques. This increased aggregation potential has made Aβ42 the focus of theories about Alzheimer’s pathology.

The amyloid cascade hypothesis, first proposed in the early 1990s, has dominated the field for decades. According to this theory, Alzheimer’s begins when Aβ42 molecules stick together to form clumps called oligomers. These oligomers aggregate into amyloid plaques, which are thought to disrupt neuronal communication, trigger inflammation, and eventually lead to the widespread damage seen in Alzheimer’s. Support for this hypothesis came from genetic studies showing that mutations in genes affecting amyloid production are linked to rare, inherited forms of Alzheimer’s.

Despite the appeal of the amyloid cascade hypothesis, efforts to treat Alzheimer’s by removing amyloid plaques have largely failed. Over 30 clinical trials targeting amyloid have either shown no significant cognitive benefits or, in some cases, worsened symptoms. This has led researchers to question whether plaques are the root cause of Alzheimer’s or a secondary byproduct of the disease. Observations that many older individuals with plaques never develop dementia have further fueled this debate.

Neurology professor Alberto J. Espay and his team hypothesized that the loss of normal, soluble Aβ42 in the brain, rather than the buildup of plaques, might drive Alzheimer’s pathology. Research supporting this idea suggests that Aβ42 plays a critical role in maintaining neuronal health and synaptic function. Its depletion, not its aggregation, may be what leads to cognitive decline.

The researchers also noted that some newly approved monoclonal antibody treatments (aducanumab, lecanemab, and donanemab) unintentionally increased Aβ42 levels in cerebrospinal fluid, which correlated with cognitive improvements. These findings prompted the team to investigate whether raising Aβ42 levels might explain the benefits of these treatments, offering a fresh perspective on the disease’s underlying mechanisms.

“Most anti-Aβ interventions had succeeded in clearing the brain from amyloid plaques, yet they were either futile or statistically favored the placebo group,” explained Espay, the director and endowed chair of the Gardner Family Center for Parkinson’s Disease and Movement Disorders and co-author of Brain Fables, the Hidden History of Neurodegenerative Diseases and a Blueprint to Conquer Them.

“I was interested in finding out what made aducanumab, lecanemab, and donanemab special. Along the way, I learned that along with removing amyloid, virtually all monoclonal anti-Aβ antibodies also increase Aβ42 in cerebrospinal fluid.”

“I was interested in finding out whether one could explain the cognitive outcomes from the opposite end of protein homeostasis—by the increases in Aβ42. This is at the core of the two opposing hypotheses in neurodegeneration in general and Alzheimer’s disease in particular: one posits that the disease is caused by the accumulation of amyloid plaques (so-called amyloid cascade hypothesis); the other that the disease is caused by the loss of Aβ42 as it transforms into amyloid plaques (the proteinopenia hypothesis). I have reviewed data in favor of the latter.”

In their new study, Espay and his colleagues analyzed data from 24 randomized clinical trials of monoclonal antibody drugs designed to target amyloid plaques. These trials included nearly 26,000 patients diagnosed with early or moderate Alzheimer’s disease. The researchers focused on changes in two key biomarkers: amyloid plaque levels (measured through imaging) and cerebrospinal fluid levels of Aβ42. They also examined cognitive performance using standardized tests like the Alzheimer’s Disease Assessment Scale and the Clinical Dementia Rating.

The team used statistical methods to compare the cognitive outcomes of patients treated with monoclonal antibodies against changes in amyloid plaques and Aβ42 levels. By evaluating the relationship between these biomarkers and cognitive improvement, the researchers aimed to determine which factor was more closely linked to slowing cognitive decline.

The results showed that increases in Aβ42 levels were just as strongly associated with cognitive improvement as the reduction of amyloid plaques. In fact, drugs that raised Aβ42 levels showed a consistent correlation with better cognitive outcomes. Conversely, treatments that lowered Aβ42 levels—such as certain enzyme inhibitors—worsened cognitive performance.

The researchers proposed that amyloid plaques might not directly cause Alzheimer’s symptoms. Instead, plaques could represent a protective response by the brain to stress or injury. The real issue, they suggested, might be the depletion of soluble Aβ42, which plays a critical role in neuron health and synaptic function. When Aβ42 levels drop below a critical threshold, cognitive decline appears to accelerate.

The findings highlight that “there are two sides to any story,” Espay told PsyPost. “We have thought that the only explanation for any potential benefit of the newly approved monoclonal antibodies for Alzheimer’s is that they are good at removing amyloid plaques from the brain. Yet many other interventions have done that in the past, to no avail. The alternative explanation for any benefit is the increase in the levels of Aβ42 in cerebrospinal fluid, which most antibodies accomplish (remarkably, such data is mostly confined to the supplementary materials of the trial reports).”

But the study, like all research, has limitations. The researchers relied on aggregated data from clinical trials, which may limit the precision of their analyses. “We don’t have individual-level data, as these are not shared by the companies that own the data. This meant we worked with lowered power to find significant differences,” Espay explained.

In other words, the researchers had to base their conclusions on group-level trends rather than detailed, individualized information. This limitation reduces the ability to account for variations in how different patients respond to treatments, potentially obscuring important nuances that could refine their findings or reveal more precise relationships between biomarkers and cognitive outcomes.

The study also raises practical challenges. Monoclonal antibody treatments, while effective at increasing Aβ42 levels, carry risks, including brain inflammation and shrinkage. Looking forward, Espay hopes “to test the potential benefits of directly increasing Aβ42 without the toxicities imposed upon the brain by removing amyloid (quite a toxic enterprise).”

“There is resistance to looking at Alzheimer’s as a loss, which is paradoxical,” he added. “We have long become too comfortable with the idea that Alzheimer’s is about a ‘gain’—of the amyloid plaques. But in fact, amyloid forms as a reaction to many things. And if too much of it is necessary in such a reaction, less of the normal protein from which it comes (Aβ42) remains.”

The study, “Increases in amyloid-β42 slow cognitive and clinical decline in Alzheimer’s disease trials,” was authored by Jesus Abanto, Alok K. Dwivedi, Bruno P. Imbimbo, and Alberto J. Espay.

TweetSendScanShareSendPin22ShareShareShareShareShare

RELATED

Poor sleep may shrink brain regions vulnerable to Alzheimer’s disease, study suggests
Memory

Neuroscientists discover biological mechanism that helps the brain ignore irrelevant information

June 14, 2025

New research suggests the brain uses a learning rule at inhibitory synapses to block out distractions during memory replay. This process enables the hippocampus to prioritize useful patterns over random noise, helping build more generalizable and reliable memories.

Read moreDetails
Psilocybin appears to have a uniquely powerful relationship with nature relatedness
Neuroimaging

Psilocybin induces large-scale brain network reorganization, offering insights into the psychedelic state

June 14, 2025

A new study using high-resolution EEG reveals that psilocybin dramatically alters brain connectivity in rats. The psychedelic induced dose-dependent changes in network organization, disrupting normal patterns of neural communication and suggesting rodents may be viable models for studying altered consciousness.

Read moreDetails
Poor sleep may shrink brain regions vulnerable to Alzheimer’s disease, study suggests
Alzheimer's Disease

Poor sleep may shrink brain regions vulnerable to Alzheimer’s disease, study suggests

June 14, 2025

Spending less time in slow wave and REM sleep may accelerate brain atrophy in regions affected early in Alzheimer’s disease, according to new research. The findings support sleep quality as a potential factor in preserving brain health.

Read moreDetails
Neuroscience discoveries: 5 new studies offer unexpected insights into the brain
Alzheimer's Disease

Common sleep aid blocks brain inflammation and tau buildup in Alzheimer’s model

June 13, 2025

Scientists have found that lemborexant not only increased restorative sleep in male mice but also reduced levels of toxic tau and brain inflammation. The findings suggest that targeting the brain’s orexin system may help slow Alzheimer’s progression.

Read moreDetails
Adversity in childhood linked to accelerated brain development
Early Life Adversity and Childhood Maltreatment

Adversity in childhood linked to accelerated brain development

June 12, 2025

New research using data from over 7,000 children suggests that adversity during late childhood accelerates brain network development. While these changes may buffer against anxiety and depression, they are also associated with poorer school performance.

Read moreDetails
Democrats dislike Republicans more than Republicans dislike Democrats, studies find
Cognitive Science

New neuroscience study reveals sex-specific brain responses to threat

June 11, 2025

A new study shows that male and female mice engage distinct brain circuits when responding to threat, challenging the assumption that similar behavior reflects identical brain function. The findings highlight the need for sex-inclusive neuroscience research.

Read moreDetails
Popular sugar substitute erythritol may impair brain blood vessel health, study finds
Mental Health

Popular sugar substitute erythritol may impair brain blood vessel health, study finds

June 9, 2025

A new study suggests that erythritol, a popular sugar substitute, may harm the cells lining blood vessels in the brain. Lab tests revealed increased oxidative stress, reduced nitric oxide, and impaired clot-busting responses—factors linked to stroke risk.

Read moreDetails
Brain imaging study finds large sex-differences in regions tied to mental health
Neuroimaging

Socioeconomic background tied to distinct brain and behavioral patterns

June 8, 2025

Researchers examining socioeconomic status and brain health found that family, neighborhood, and regional conditions are differently associated with memory, emotion, and brain connectivity, depending on when in life they occur and what kind of disadvantage is measured.

Read moreDetails

SUBSCRIBE

Go Ad-Free! Click here to subscribe to PsyPost and support independent science journalism!

STAY CONNECTED

LATEST

Low-carb diets linked to reduced depression symptoms — but there’s a catch

Neuroscientists discover biological mechanism that helps the brain ignore irrelevant information

Problematic porn use remains stable over time and is strongly linked to mental distress, study finds

Christian nationalists tend to imagine God as benevolent, angry over sins, and engaged

Psilocybin induces large-scale brain network reorganization, offering insights into the psychedelic state

Scientists map how alcohol changes bodily sensations

Poor sleep may shrink brain regions vulnerable to Alzheimer’s disease, study suggests

Narcissists perceive inequity because they overestimate their contributions, study suggests

         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy