Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Cognitive Science

New neuroscience breakthrough: Noninvasive stimulation technique modulates deep brain structures

by Eric W. Dolan
November 25, 2023
in Cognitive Science, Neuroimaging
(Photo credit: OpenAI's DALLĀ·E)

(Photo credit: OpenAI's DALLĀ·E)

Share on TwitterShare on Facebook

In a groundbreaking study, scientists have successfully used a new noninvasive brain stimulation technique to modulate deep brain activity, leading to enhanced motor learning, especially in older adults. This finding, published in Nature Neuroscience, has significant implications for understanding brain function and could pave the way for new treatments for various brain disorders.

Before this study, scientists primarily used invasive methods or less targeted noninvasive techniques to study deep brain structures like the striatum, crucial for motor learning. These traditional methods either required surgical procedures or could not specifically target deeper brain regions without affecting the areas above them. Recognizing these limitations, researchers sought a noninvasive yet precise way to stimulate these deep-seated brain areas to better understand and potentially improve motor learning processes.

“Mental disorders impose a personal and financial burden on society, affecting patients and their families, and costing nearly 1 trillion Euros annually in the EU,” explained study author Friedhelm Hummel, who holds the Defitchech Chair of Clinical Neuroengineering at EPFL’s School of Life Sciences.

“Developing effective therapies for these diseases remains challenging due to the complexity of the brain and mental symptoms. Current treatment approaches, for example, psychotropic drugs, are not based on recent advances in neuroscience and neurotechnology, have limited efficacy, and come with side effects. A particular concern is symptoms that resist currently available treatment approaches, which occur in up to half of the patients with a major mental disorder such as schizophrenia, stroke, dementia, addiction or depression.”

“Addressing this unmet need requires a fresh perspective and innovative solutions,” Hummel said. “These disorders and the respective symptoms are represented by pathological brain network interactions with core structures of these networks deep in the brain such as the striatum or the hippocampus. Thus, these structures are potentially promising targets for interventional strategies based on neuromodulation.”

“Current neurotechnology allows us to target these areas only invasively due to limitations of current non-invasive approaches, like TMS. However, invasive approaches bare several risks of side-effects and suffer from acceptability especially in mental health disorders. Thus, it is critically important to develop novel non—invasive neurotechnologies to target specifically these deep brain regions to pave the way to novel treatment strategies for these unmet symptoms in mental health disorders.”

“The present concept of transcranial temporal interference electrical stimulation (tTIS) might allow us to address this mentioned gap and shortcomings, therefore we addressed this topic in a series of studies,” Hummel told PsyPost. “To this end, we selected as a target the striatum as it is a core area involved in the pathophysiology of and recovery from several neurological and psychiatric disorders, such as stroke, addiction, anxiety, depression or neurodegenerative disorders like the Parkinson spectrum.”

The study involved 45 healthy participants, split into two experiments. The first experiment included 15 young adults who underwent functional magnetic resonance imaging (fMRI) while performing a sequential finger tapping task. The researchers used tTIS during this task to modulate striatal activity, utilizing a sequence of electrical pulses, known as “theta burst,” to alter brain activity in their human participants.

In the second experiment, the research team included both older (average age 66 years) and younger adults (average age 26 years). They performed similar tasks under tTIS, but with longer task blocks and shorter overall training duration, to test if the technique’s effects were consistent across different ages and training protocols.

In the first experiment, the researchers found that the brain stimulation led to increased activity in the putamen, a region of the brain involved in motor learning, during the finger-tapping task. This effect was more pronounced in the putamen than in another part of the striatum, the caudate. Notably, the increased activity in the putamen was associated with improved performance in the motor task. Furthermore, they observed that the stimulation influenced the brain’s motor network, including regions such as the thalamus and supplementary motor area.

“There is now first proof of concept that deep brain structures can be neuromodulated, i.e. brain activity changed and behavior enhanced in a non-invasive fashion,” Hummel explained. “This might pave the way to completely novel interventional strategies for mental health disorders where deep brain structures, such as the striatum or the hippocampus play a core role, like in Alzheimer’s disease, stroke, traumatic brain injury, depression, addiction, anxiety or in movement disorders. Furthermore, it provides means to better understand brain functioning and especially the role of deep brain structures in humans.”

In the second experiment, the impact of brain stimulation was particularly significant among older adults. The older group showed a more substantial improvement in the motor task during brain stimulation compared to younger participants. This finding suggests that the technique could be especially beneficial for older individuals, who typically have a reduced capacity for motor learning.

“The effects we found in healthy older were surprisingly strong,” Hummel told PsyPost. “The stimulation during a short training period of less than 30 minutes led to an improvement of more than 30% compared to the placebo condition.”

However, it’s important to note some caveats. The technique’s success depended on the presence of task-related brain activity. In other words, the stimulation didn’t induce changes during rest periods. This specificity implies that the brain stimulation works best in conjunction with active learning processes. Moreover, the study primarily focused on short-term effects, and long-term impacts remain unclear.

“There are still several open questions to address in upcoming studies, such as better understanding of the underlying mechanism, personalization of the stimulation to the individual, better topographic resolution of the stimulation, biomarkers that allow to predict the treatment response, most importantly clinical translation (in this regard studies are ongoing),” Hummel said.

The study, “Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning“, was authored by Maximilian J. Wessel, Elena Beanato, Traian Popa, Fabienne Windel, Pierre Vassiliadis, Pauline Menoud, Valeriia Beliaeva, Ines R. Violante, Hedjoudje Abderrahmane, Patrycja Dzialecka, Chang-Hyun Park, Pablo Maceira-Elvira, Takuya Morishita, Antonino M. Cassara, Melanie Steiner, Nir Grossman, Esra Neufeld, and Friedhelm C. Hummel.

RELATED

Analysis of 45 serial killers sheds new light on the dark psychology of sexually motivated murderers
Neuroimaging

Feeling grateful fosters cooperation by synchronizing brain activity between partners

November 19, 2025
Analysis of 45 serial killers sheds new light on the dark psychology of sexually motivated murderers
Neuroimaging

Scientists pinpoint cellular mechanism behind psilocin’s effects on brain activity

November 19, 2025
Positivity resonance predicts lasting love, according to new psychology research
Music

Listening to your favorite songs modulates your brain’s opioid system

November 18, 2025
The disturbing impact of exposure to 8 minutes of TikTok videos revealed in new study
Cognitive Science

Active short video use linked to altered attention and brain connectivity

November 18, 2025
Scientists discover a pet’s fascinating “afterglow effect” on romantic couples
Anxiety

Researchers find the “gas pedal” and “brake” for anxiety, and they aren’t neurons

November 18, 2025
New study connects Mediterranean diet to positive brain chemistry
Cognitive Science

Scientists reveal intriguing new insights into how the brain processes and predicts sounds

November 18, 2025
Scientists uncover previously unknown target of alcohol in the brain: the TMEM132B-GABAA receptor complex
Neuroimaging

A sparse population of neurons plays a key role in coordinating the brain’s blood supply

November 17, 2025
New research sheds light on parenthood’s impact on abortion views
Cognitive Science

Specific parental traits are linked to distinct cognitive skills in gifted children

November 16, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Beyond transactions: What new psychology research reveals about true friendship

Researchers uncover complex genetic ties between ADHD and morning cortisol

Toxic masculinity indirectly lowers help-seeking behavior by encouraging men to bottle up emotions

Feeling grateful fosters cooperation by synchronizing brain activity between partners

Fascinating new research turns the “trophy wife” trope on its head

Creatine supplement may enhance brain function during menopause, new research suggests

Scientists pinpoint cellular mechanism behind psilocin’s effects on brain activity

Analysis of 45 serial killers sheds new light on the dark psychology of sexually motivated murderers

RSS Psychology of Selling

  • A bad mood might not hurt your work productivity as much as you think
  • The surprising power of purchase preconditions in retail
  • What separates K-pop and C-pop in the American Gen Z market? A new analysis offers clues
  • What the neuroscience of Rock-Paper-Scissors reveals about winning and losing
  • Rethink your global strategy: Research reveals when to lead with the heart or the head
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy