Subscribe
The latest psychology and neuroscience discoveries.
My Account
  • Mental Health
  • Social Psychology
  • Cognitive Science
  • Psychopharmacology
  • Neuroscience
  • About
No Result
View All Result
PsyPost
PsyPost
No Result
View All Result
Home Exclusive Mental Health

New treatment strategy could cut Parkinson’s disease off at the pass

by Johns Hopkins Medicine
October 11, 2016
in Mental Health
Photo credit: Journal of Parkinson's Disease

Photo credit: Journal of Parkinson's Disease

Share on TwitterShare on Facebook

Researchers at Johns Hopkins report they have identified a protein that enables a toxic natural aggregate to spread from cell to cell in a mammal’s brain — and a way to block that protein’s action. Their study in mice and cultured cells suggests that an immunotherapy already in clinical trials as a cancer therapy should also be tested as a way to slow the progress of Parkinson’s disease, the researchers say.

A report on the study appears Sept. 30 in the journal Science.

Ted Dawson, M.D., Ph.D., director of the Institute for Cell Engineering at the Johns Hopkins University School of Medicine and one of the study’s leaders, says the new findings hinge on how aggregates of alpha-synuclein protein enter brain cells. Abnormal clumps of alpha-synuclein protein are often found in autopsies of people with Parkinson’s disease and are thought to cause the death of dopamine-producing brain cells.

A few years ago, Dawson says, a researcher at Goethe University in Germany published evidence for a novel theory that Parkinson’s disease progresses as alpha-synuclein aggregates spread from brain cell to brain cell, inducing previously normal alpha-synuclein protein to aggregate, and gradually move from the “lower” brain structures responsible for movement and basic functions to “higher” areas associated with processes like memory and reasoning. “There was a lot of skepticism, but then other labs showed alpha-synuclein might spread from cell to cell,” Dawson says. Intrigued, his research group began working with those of Valina Dawson, Ph.D., professor of neurology, and Han Seok Ko, Ph.D., assistant professor of neurology, to investigate how the aggregates enter cells.

The researchers knew they were looking for a certain kind of protein called a transmembrane receptor, which is found on the outside of a cell and works like a lock in a door, admitting only proteins with the right “key.” They first found a type of cells alpha-synuclein aggregates could not enter — a line of human brain cancer cells grown in the laboratory. The next step was to add genes for transmembrane receptors one by one to the cells and see whether any of them allowed the aggregates in. Three of the proteins did, and one, LAG3, had a heavy preference for latching on to alpha-synuclein aggregates over nonclumped alpha-synuclein.

The team next bred mice that lacked the gene for LAG3 and injected them with alpha-synuclein aggregates. “Typical mice develop Parkinson’s-like symptoms soon after they’re injected, and within six months, half of their dopamine-making neurons die,” Dawson says. “But mice without LAG3 were almost completely protected from these effects.” Antibodies that blocked LAG3 had similar protective effects in cultured neurons, the researchers found.

“We were excited to find not only how alpha-synuclein aggregates spread through the brain, but also that their progress could be blocked by existing antibodies,” says Xiaobo Mao, Ph.D., a research associate in Dawson’s laboratory and first author on the study.

Dawson notes that antibodies targeting LAG3 are already in clinical trials to test whether they can beef up the immune system during chemotherapy. If those trials demonstrate the drugs’ safety, the process of testing them as therapeutics for Parkinsons’ disease might be sped up, he says.

For now, the research team is planning to continue testing LAG3 antibodies in mice and to further explore LAG3’s function.

More than 1 million people in the United States live with Parkinson’s disease. The disease gradually strips away motor abilities, leaving people with a slow and awkward gait, rigid limbs, tremors, shuffling and a lack of balance. Its causes are not well-understood.

RELATED

Beta blockers: how these common heart medications may reduce the risk of violence
Mental Health

Common acne medication linked to reduced schizophrenia risk

November 25, 2025
Ayahuasca accelerates fear extinction via its effect on serotonin receptors
Depression

Inflammation in a key dopamine hub correlates with depression severity

November 25, 2025
Distinct neural pathways link fear of missing out and negative emotions to compulsive phone use
Dementia

New study links leafy greens, berries, and fish to better cognitive health

November 25, 2025
Distinct neural pathways link fear of missing out and negative emotions to compulsive phone use
Mental Health

Fundamental beliefs about the world can buffer against the psychological impact of trauma, new research suggests

November 25, 2025
Long-term benzodiazepine use linked to shrinkage in two brain regions
Depression

Antidepressants may improve mood weeks earlier than standard tests suggest

November 24, 2025
Longitudinal study of kindergarteners suggests spanking is harmful for children’s social competence
Dementia

Childhood maltreatment linked to poorer cognitive performance in young adulthood and later midlife

November 24, 2025
Researchers identify neural mechanism behind memory prioritization
Alzheimer's Disease

Semaglutide improves biomarkers but fails to preserve memory in Alzheimer’s patients

November 24, 2025
Scientists identify a fat-derived hormone that drives the mood benefits of exercise
Mental Health

Gratitude exercises may help the heart recover from stress

November 24, 2025

PsyPost Merch

STAY CONNECTED

LATEST

Mystical beliefs predict a meaningful life even without organized religion

Why forced gratitude might make some teens meaner online

Common acne medication linked to reduced schizophrenia risk

How positive parenting builds grit through gratitude

Inflammation in a key dopamine hub correlates with depression severity

New study links leafy greens, berries, and fish to better cognitive health

Fundamental beliefs about the world can buffer against the psychological impact of trauma, new research suggests

Single session of weightlifting improves executive function and processing speed

RSS Psychology of Selling

  • Research reveals a hidden trade-off in employee-first leadership
  • The hidden power of sequence in business communication
  • What so-called “nightmare traits” can tell us about who gets promoted at work
  • What 5,000 tweets reveal about the reality of Black Friday deals
  • A bad mood might not hurt your work productivity as much as you think
         
       
  • Contact us
  • Privacy policy
  • Terms and Conditions
[Do not sell my information]

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist

Subscribe
  • My Account
  • Cognitive Science Research
  • Mental Health Research
  • Social Psychology Research
  • Drug Research
  • Relationship Research
  • About PsyPost
  • Contact
  • Privacy Policy